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CHAPTER 1

INTRODUCTION

This research investigates methods for estimating
the position of a moving source by the processing of an
acoustically radiated signal received at two or more
physically separated sensors. If the source signal
is received at two geographical positions in the presence
of uncorrelated noise, then, depending on the signal
strength and duration, it is possible to estimate the
bearing to the source relative to the sensor baseline.
When the source signal is received at three sensors,
range, as well as bearing to the source, can be estimated
by using the intersection of two bearing lines of position
(LOPs). The mathematics for the solution to the problem
of finding the ''best'" estimate of bearing is analogous
to the more g>neral problem of estimating the time delay
(or group delay) between two time series. Therefore,
this dissertation derives the maximum likelihood (ML)
estimate time delay.

Techniques for estimation of time delay can be
applied to a variety of practical problems, in addition
to those motivating this researcn. For example, if we

consider a signal which probes a linear time invariant

1
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system, then the problem of estimating time delay can
be viewecd as attempting to identify a parameter of the
probed system, based on time-limited, noise-corrupted
observations of the system input and output. The delay
is a particularly valuable characterization of the system
(and interrelationship between two processes) when the
system output is an attenuated and delayed version of the
input. Physical plants in which delays occur can also be
visuvalized in terms of the bearing estimation problem.
For example, consider two geographically separated
sensors that receive a signal from an acoustically
radiating point source, as shown in Figure 1-1, If
the properties of the medium are such that the signal
from the source propagates at a constant velocity, then
the travel time from the source to either sensor is
directly proportional to the distance traveled. Thus,
the difference between the travel time (from the source
to each sensor) or time delay is given by the difference
in path lengths divided by the propagation velocity.
There exists a well defined locus of points (relative to
the sensors) for which the time delay is constant. Hence,
knowledge of the time delay is sufficient to dictate
that the source is located somewhere on that locus of
points. In particular, the acoustic source must be
located on the locus of points that satisfies the constant
time delar constraint, namely, the hyperbola in
Figure 1-2. The bearing angle, 6, that the hyperbolic

asymptote makes with the baseline is a good approximation
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to the true bearing to the source (relative to the
midpoint of the baseline) especially for distant sources.
Thus, by making a distant point source (or equivalently
a plane wave) assumption and solving for the bearing
angle 6, one is equivalently finding the angle that the
hyperbolic asymptote (or line of position (LOP)) makes
with the baseline. Familiarity with hyperbola suggests
that the source need not be very distant (relative to
the sensor separation d) in order for the arrival angle
to be a good estimator of true source angle. In the
estimation problem, the receivers are attempting to
estimate bearing (or position) of a source that is
radiating a signal either intentionally or unintentionally.
During intentional radiation (for example, a communica-
tions system) signal statistics are selectable within
certain practical and regulatory limitations. 1In other
applications, the signal characteristics are unknown
and the output of the sensors must be processed without
this a priori knowledge in order to estimate time delay
or equivalently source bearing. In this thesis it is
assumed that the source characteristics are not under
the control of the designer and at best the spectral
characteristics of the signal are known or estimated.
The time delay estimation research piesented in
this text is arranged in six chapters and four appendices.
Because the estimation of time delay and bearing is

intimately related to the coherence between two received
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waveforms, an extensive investigation of coherence is
given (in Chapter 2). New results on using coherence
to provide information about linear and nonlinear
system identification are presented and proved. Among
other results, Chapter 2 explicitly shows how the
signal-to-noise ratio (SNR) is a function of coherence.
In Chapter 3, the ML estimate of time delay
between twc signals is derived under jointly stationary
Gaussian assumptions. The explicit dependence of the
time delay estimate on coherence is evident in the
estimator realization in which the two time series are
prefiltered (to accentuate frequency bands according
to the strength of the coherence) and subsequently
crosscorre..ated. The time argument at which the
generalized crosscorrelation (GCC) function peaks is
the time delay estimate (Carter and Knapp (1976a)).
The method of derivation is akin to the ML bearing
estimate derived by MacDonald and Schultheiss (1969)

with two excepticuns: (1) the technique here requires

no plane wave assumption but finds the ML estimate of the

more general time delay parameter, from which one can
estimate both the hyperbolic LOP and source bearing,
and, (2) the derivation here does not constrain the
additive noise waveforms at differeat sensors to have
the same spectral characteristics. These conditions
allow for widely spaced sensiors since the spectral

characteristics of the noise can be different and the
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signal wavefront is not constrained to be planar.

Having derived the ML estimate of time delay,
we show that it is equivalent to the GCC function with
prefiltering suggested by Hannan and Thomson (1973).
Although the ML estimator is the same as the method
suggested by Hannan and Thomson (1973), this could
not have been accurately predicted ahead of time.

The Hannan Thomson (HT) processor was obtained as a

GCC function with optimally determined weighting.

In related work, Clay. Hinich, and Shaman (1973) arrived
at a less general ML estimate for bvaring, due to the
assumption that the signal spectra! ..haracteristics

were flat in the frequency band of interest. The results
of this thesis are also more general than those of
MacDonald and Schultheiss (1969) because there is

no signal plane wave assumption and the noise spectral
characteristics can differ from sensor to sensor.

When the received signal and noise waveforms are
stationary and Gaussian with known spectral characteristics,
it is shown that the ML estimate of time delay achieves
the Cramér-Rao bound. Thus, the ML estimate, in this
case, achieves a variance less than or equal to that
attained by any other means. Two realizations of the
time delay estimate are given: the first, uses the
GCC function with appropriate prefilters; the second

appropriately filters, sums, squares, and averages as
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suggested by Carter and Knapp (1976a). Further, when
the spectral characteristics are known the variance of
the delay estimates is derived for all GCC processors.
When the signal and noise spectral characteristics are
unknown, as is often the case in the passive bearing
estimation problem, it is suggested that an approximate
technique be used, whereby estimates of the ML weighting
are inserted in the place of the correct weighting.
This heuristic procedure will converge to the ML estimate
provided the weighting is properly estimated. The
appendices summarize woirk in this area by Carter, Knapp,
and Nuttall (1973a) to estimate the spectral densities
including coherence. (Details of the appendices are
discussed later in the introduction.)

In Chapter 4, the variances of six proposed time
delay estimates, including ones suggested by Roth (1971)
and Carter, Nuttall, and Cable (1973), are compared for
an example case where the signal and noise have
rectangular spectra with different bandwidths. The
results confirm the advantages of ML time delay
estimation.

The estimation formulation is extended, in Chapter
5, to three important generalizations: multiple sources,
moving source, and multiple sensors. The multiple
source problem introduces a new term in the award
function whichk was maximized in Chapter 3 to obtain a

single time delay estimate. This additional term is the
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information between two processes. Nettheim (1966),
using results of Gelfand and Yaglom (1959), has

shown the Shannon (1949) definition of information to

be directly related to the coherence between two
processes. Thus, as with the single time delay
estimation problem, coherence plays an important role.
Source motion sigrificantly complicates the bearing
estimation problem as indicated in section B of Chapter 5.
Indeed, unless some preprocessing is done, the received
waveforms appear uncorrelated despite the presence of a
common but time compressed (or less generally, Doppler
shifted) signal. A method based on the ideas of Chapter
3 is suggested for preprocessing the received waveforms
to remove the effect of source motion. The last section
of Chapter 5 extends the filter and sum realization for
time delay estimation to a multiple sensor environment.
Finally, Chapter 6 is a brief discussion and summary of
applications for the methods of time delay estimation
and suggestions for future work.

The appendices of this dissertation are prov.ded to
implement and corroborate the theory developed in Chapter 3.
Appendix A summarizes two methods of spectral estimation
given in Carter, Knapp, and Nuttall (1973a) and Carter
and Knapp (1975). Appendix B gives important results
of the statistical behavior of the estimates of the
magnitude-squared coherence (MSC), including the

probability density Tunction (pdf), the cumulative
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distribution function (cdf),and the m-th moment of the
MSC estimate. A complete discussion of the bias and the
variance of the MSC estimates is presented, including
a simulation (done by Nuttall and Carter (1976b)) that
supports theoretical results of Haubrich (1965) and
Carter, Knapp, and Nuttall (1973a) and refutes past
simulation results of Benignus (1969a). Using a method
suggested by Benignus (1969a), a reduced bias method
of MSC estimation is verified; however, it is discovered
that for many practical estimation situations the reduced
bias MSC estimator will have increased mean square error
(MSE) when compared with the MSC estimator given in
Appendix A. An example is giver of erroneous simulation
results (in particular, unexpectedly large bias) when
the assumptions of the theory have been violated.

In the process of detecting a coherent source
it is desirable to establish a threshold above which a
source is considered detected. Rules for establishing
such a threshold are given (Carter (1976)) in order to
achieve a specified probability of false alarm. Having
established such a threshold, it is possible to determine
the probability of detecting &a coherent source; the
probability of detection will depend both on the
observation time and the underlying strength of the
coherent source. Example receiver operating character-
istics are plotted for different observation times and

coherent source levels.
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Appendix C gives a complete FORTRAN IV computer
listing of a program to estimate time delay. The
program was successfully compiled and run on both a
Univac and an IBM computer, Appendix D presents an
example case to validate both the theory and the computer

program.

The text, then, is arranged as follows: Chapter 3
contains the derivation for the ML time delay estimator;
because these results depend on the coherence between
two random processes, we first demonstrate in Chapter 2
what characteristics the coherence possesses. Chapter 4
compares the ML estimator derived in Chapter 3 with
other proposed methods for estimating time delay.
Chapter 5 extends the results of Chapter 3 to three
important generalizations: multiple sources, moving
source,and multiple sensors. Applications and a general
discussion are presented in Chapter 6. The four
appendices are all concerned with experimental
verification of approximate methods for estimating time

delay presented in Chapter 3.




.

CHAPTER 2

THEORY AND APPLICATIONS OF COHERENCE

The solution to the physical problem of estimating
source bearing is intimately tied to the coherence
between spatially separated passive sensors.

This chapter presents the definition and properties
of the coherence and several new results on its use.

These results bear both directly and indirectly on the
solution to the optimum delay estimation problem.

2A. Definition, Relationship to Crosscorrelation, and

Properties
2A1. Definition
The coefiicient of coherency (CC) between two
wide sense stationary random processes is the normalized

cross power spectral density function defined by Weiner

(1230) as Gx - (1)
172

’ (2_1)

Y (f) =
X1%2
Gx X (f) Gx X (f)
171 272
where f denotes the frequency (Hz), Gx % (f) is the cross-
172
power spectrum between xl(t) and xz(t), and Gx % (),

171
G (f) denote the auto powe. spectra of x,(t), Xx,(t),
XoXg 1 2

respectively. Despite some coni '‘sion in the literature,

Weiner intended fer the CC to be complex. This is

12
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apparent since he discusses (p. 194, Weiner (1930))

both the modulus and the argument of the CC. Moreover,
in suggesting how one might compute the CC, the modulus
of the complex numerator is not indicated. The CC is
also referred to as the complex coherence (Carter, Krapp,
and Nuttall (1973a)). Many of the results which follow
depend on the magnitude-squared of the CC (MSC). The
MSC is also referred to as the squared cnherency
(Jernkins and Watts (1968)).

In order to simplify the notation throughout

the thesis, we define

e 2
x, (1) =

Cx (2-2)

(f)
2

Y
1 xlx

When the two processes under consideration are apparent,
we further simplify the notation by letting

= = ]
C(f) = C xg(f) = C12(f .

X
1
The magnitude of the CC (MC) is denoted by

Y (1)
X1X9

= : (2-3)
Cx X (f)
172
The term 'coherence' can imply CC, MC or MSC. Indeed,

variables that are a function of the MSC (or MC) alone
are also functions of the CC alone, but not necessarily
vice versa. While it seems most natural mathematically
to refer to the CC as the coherence, the majority of the
literature refers to the MSC as coherence.

Since Gx X (t) and Gx 2 (t) are real, the phase

171 272
of the C: denoted by

f) = A gt 2-4
¢x1x2( ) rg[§x1x2( ﬂ (2-4a)
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= Arg [lexz(f)] (2-4b)
= Arg [G"1"2(f)/6"1"1(f)]; (2-4¢)

that is, the phase of the CC is the same as the phase of
the cross spectrum. Later we will interpret (2-4c) as
the phase of the optimum linear filter that maps xl(t)
to x2(t).
2A2. Relation to Crosscorrelation
The CC between x(t) and y(t) can be confused with
the crosscorrelation coefficient or normalized cross-

correlation function defined for zero mean processes by

RXX(T) .
2
[Rxx(O) Rw(ofl

The normalized crosscorrelation is a function of lag and

(2-5)

ny(r) =

not frequency. Further note that the normalizing factor
is the scalar [Rxx(O) Ryy(O)]*, independent of 7. It

is not a lag dependent normalization. The CC has an
abscissa dependent type of normalization (2-1),

However, there are two models of filtering that aid in
interpreting tue CC as a tvpe of crosscorrelation.

In the first model, we are given x(t) and y(t) as
depicted in Figure 2-1, and we want to find the CC
between x(t) and y(t). If we prefilter x(t) by the
linear filter Hl(f) and y(t) by the linear Hz(f), then
(from p. 399, Davenport (1970)) the cross spectrum
between the filter outputs is

. *
Gy y, (1) = Gy (1) Hy (BT (E) (2-6)
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Figure 2-1 Distinct Linear Filters Hl_
x,y and Outputs X,,yy

H2 with Inputs
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Thus, if we select

* _ 1
By (£)H,*(f) = , (2-7)

Gxx(f)ny(f)

it follows that

yl(f) = Wl

Gx Xy

1
Thus, the CC between x(t) and y(t) can be obtained by
first prefiltering x(t) by the realizable whitening
filter

Hy (f) =i Gie() (2-8)

Gxx(f)

and prefiltering y(t) with a realizable whitening

filter with the same phase as (2-8). Namely, we select

Hy(f) = —1 I (2-9)
V G ()
yy
Such filtering ensures
¢x1y1(f) = OpglR) (2-10)

That is, the phase between input processes is invariant
to equiphase filtering. Then, to compute the CC between
x(t) and y(t), we compute the cross spectrum between
xl(t) and yl(t). This could be accomplished by cross-
correlating xl(t) and yl(t) and taking the inverse
Fourier transform (or see Appendix A).

In the second model used to understand the CC we
observe that for xl(t) and yl(t) (in Figure 2-1 ) zero

mean
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on

;G (OH (DES(NeI?" T ar

lo XY
S e T (2-11)
171 ar (f)IH )24z fo (o) lmc6)l2 agl?
[ G (D |ay (D) |%ar 16 () |ayc0)(2 at
Thus if
je(f ) )
Hy (D=Hy(0) = (T, - Beltice v &, (2-12)
o , elsewhere
(2-11) becomes (for small Af)
Ja2nf 1 -ja2nf 1
G _(f )e c +G__ (-f )e c
pxlyl(r)é[ S Pl Xy ci ]Af (2-13a)
[Gxx(fc)ZAf : ny(fc)ZAf]
R [G (f )ejznfcf]
z 2L XY ¢ (2-13b"
Gxx(fC)ny(fC)
* Re [ny(fc)ejz“ch] (2-13¢)
= ‘ny(fc)I%os 21t _(1-D )] . (2-13d)

The crosscorrelation coefficient at zero argumcat is
given by
Px,¥,(0) = Re[Y (f )] ; (2-14)
171 Xy'c
Thus we see from (2-14)and (2-13d) how the CC is
related to the crosscorrelation coefficient.
2A3. Properties

The power spectral density matrix is positive

semidefinite (Jenkins and Watts (1968)). Therefore,
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for two random processes, we se¢ that

Gx X (r) Gx (r)

1*1 1%2
lQ (D] = >0 . (2-15a)
G (f) G (f)
Xo%3 XgXg
For real processes,Gx = (f) = G; = (f) and thus
271 172
2
G. _ (£)6. _ (f) -l 6. _ ()¢ >0, (2-15b)
X ey s ) -
and
2
G (£)G (£) > |G () . (2-15¢)
x 1% K0, | X1%g |
Further, G (f) and G (f) are nonnegative, real
%1% Xg9Xg
functions of {f. When G (f), G (f) are strictly
i ) XoXg
posiiive definite (that is, when lexl(f)zexz(f)>OL

(2-15c) can be divided through by G (£)G (f)

X1%y XX,
without changing the sense2 of the inequality thereby
yielding

c (f) < 1, vf. (2-162a)
X1%9

Further, the magnitude-squared of any complex number is

greater than or equal to zero. Thus,

0<C , (f) <1 . (2-16b)

X1%2

The MSC always falls betwseen zero and one. Further,
as will be shown, it is zero if the processes xl(t)
and xz(t) are uncorrelated; and, it is equal to unity
if there exists a linear relation bhetween xl(t) and

xz(t). The cross-power spectrum is then defined by
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Hannan and Thomson (1973)as

G, 4 (£) =G , (DG (D v, , (£) . (2-17)
X1X2 J xlxl X2X2 xlxz

This definition is interesting since it points out the
importance of the coherence. It should be noted that if

Y (f) is undefined, G (f) cannot be computed from

X1%2 e )

(2-17) (as, for example, when G (f) and G (f) are
1% E%y

zero). Here we note that the statement Cx % (f) =0
172
provides more information than the statement
|G (f)]2 = 0, since in the former case, both auto-
X1%2
spectra must be nonzero. However, it may be more exact
to say | Gx = (f)|2 is undefined when no measurement is
1‘\
made.
In order to define the MSC, it is necessary that

the numerator and denominator of that ratvio not be

simultaneously zero. Moreover the MSC will be undef.ned

if either autospectra is zei.o. For example, if

G (f) = 0 or Gx % (fy = 0 it must be true from (2-15c¢)
7

X.X
i1 277
that |G, , |2 = 0. Hence, it can be concluded that if
172
either G (f) or G (f) is zero over some frequency
X1%1 Xg9Xg

range then the MSC is undefined over that same frequency
range. Further, if this is the case, the power spectral
density matrix is singular. Another property of the MSC
is that the MSC is invariant under linear transformations.
If =z(t) is filtered by Hl(f) and y(t) is filtered by

Hz(f) as depicted in Figure 2-1, then
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2
| Gy (D]

“x.y, ) = E_(HE__(D ’ e
171 XX vy

16y ()] 20y ()] 21,00 2
= 2 2
Gy (D [H ()| % G (1) [Hy(D))]

= ny(f)f2-18b)

; 2 2
Thus provided |H1(f)| |H2(f)| £ 0

Cxyy,(1) = € () | (2-19)

That is, the MSC is the same between x and y as
between the filtered versions X4 and 2K

2B. Uses of Coherence Function

The MSC function for the zero-mean, wide-sense
stationary processes x(t) and y(t) is useful in several
ways, which will be proved in the following sections.
First, for two independent processes, the MSC function
is zero. Second, the MSC measures the degree of system
linearity. Third, under the assumptions to be
presented, the MSC function serves as a SNR measure.

2B1. Measure of Correlation
THEOREM 2-1: If two zero-mean stationary processes
xit) and y(t) are independent, they are also uncorrelated

and orthogonal;

ny(T) = E[x(t)y(t-1)] = Elx(t)] E[y(t-1)] = 0,(2-20a)

Gy (1) = f:ny(r)e‘Jz"f‘dr =0, (2-20b)
and the MSC

Cyy(f) = 0, VI (2-20c)

provided Gxx(f)ny(f) #0.

. Ty
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Hence, if the two processes are independent (or
uncorrelated) with zero mean, the MSC between them is
Zero.

DISCUSSION OF THEOREM 2-1: Note that jointly Gaussian
random processes that are uncorrelated (incoherent)

are also independent. However, it is possible for two
processes to be highly dependent yet uncorrelated
(incoherent), even if one of the two processes is
Gaussian. Although one may be led by physical
considerations to presume processes are independent and
hence uncorrelated, in practice, it is easier to show
processes are uncorrelated than independent. Note that
it ny(f) = 0, Vf, it follows that Re[yxy(f)}=
Im[yxy(f)] = Q) = ny(f), Vf and thence it follows that
ny(r) = 0, yr. Hence, we see that if two processes

are incoherent, then they are also uncorrelated. However,
as stated earlier, being incoherent does not necessarily
imply being independent. For example, suppcse

v(t) = n(x) and x(t) is a zero mean stationary random
Gaussian process with variance 02 and first order

probability density "'nction (pdf),

) = x2/20% (2-21)
A" 2n02

then from Nuttall (1958) and Carter and Knapp (1975)

R, (1) = KR (1), (2-22)

where
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[t ]

1
K ;5 f n(x)x

2 rreid
1 o~ X /20 d

X . (2-23)
2

-w 210

Therefore, for even nonlincarities, K=0 and ny(r)=0.

Hence ny(f)=0 and ny(f)=0. Thus, it 1is simple to derive
a process y(t) which is completely dependent on x(t)

but which is uncorrelated with it. Hence, the converse

of theorem (2-1) does not hold and coherence does not
provide information on dependence or independence but

only on second order measures like correlation.

2B2. Measure of System Linearity
The MSC function can be used to measure system
linearity. In Figure 2-2 consider the linear system
with input x(t), impulse response h(t), and output y(t).

The output y(t) is expressed by the convolution integral

oo

S h(t)x(t-1) dt , (2-24a)

- 00

y(t)

or

y(t) = h(t) ® x(t) , (2-24b)
where © denotes convolution.
In the Fourier domain the convolution is the multi-
plication (Oppenheim and Schafer (1975))

Y(f) = H(E)X(f) , (2-25)

where X, H, and Y are Fourier transforms of x, h and

y, respectively.
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x {t)

o h(T)

y (t)

Figure 2-2 Linear System with Impulse Respone h(t)
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THEOREM 2-2:
I1f a system is linear then
Yoo () = 0y ys (2-26)
y
and hence
ny(f) =1, Vi. (2-27)

PROOF OF THEOREM 2-2:

For linear systems,

ny(f)=:xy(f)H;y(f)Gxx(r),ny(f)=n;y(f)Gxx(f) (2-28)
or when Gxx(f) # 0
¢ ) ny(f)G;X(f) -
= G . (2-29)
vy Gix( £) XX

Substituting ny(f) into the basic definition of CC,

I jo. (f)
G (f) G__(f) e" "Xy
Yeg(E) = F‘xy .y ‘ - (2-30a)
V 6, (£)83,(D) \flsxy(fw
- eJ0xy(T) - (2-30D)
Further,

ny(f) E|ny(f)‘2 - cos? [ﬁxy(f)]+sin2[¢xy(fﬂ =1.(2-31)

DISCUSSION OF THEOREM 2-2: This theorem ijs related to

work of Koopmans (1964), Jenkins and Watts (1968),

Otnes and Enochson (1972), Carter, Knapp and Nuttall

(1973a), Koopmans (1974), Brillinger (1975), and

Halvorsen and Bendat (1975). This theorenm, experience,

and certain jntuition lead one to believe the converse

of the theorem should also be true. To date no proof

has been presented for the converse. Notably, it is
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the converse which would play a most important role in
the applications area. This is because one is seldom

1 given a linear system and asked to measure MSC. Rather,
one is given an unidentified system and asked:

"Is it linear?”. In the past, if the MSC was unity, one

had a "hunch" that this was true but no rigorous proof

e

existed to assert this truth. The following theorem
acts to clarify this dilemma and indeed show what can
and what cannot be said about linearity when the MSC

is unity.

' The strongest theoren. which can be proved in

- this regard is as follows:

1 THEOREM 2-3: If ny(f)=1,Vf, then with probability one
there exists an optimum filter with unique transfer
function Ho(f) that can act on the input, x(t), to an
unidentified system to achieve output yo(t) exactly
equal in every detail to the output y(t) of the

unidentified system, (that is, yo(t)=y(t), with

e A el ittt

probability one). Moreover, the phase of the filter

A H (f) = = A
rg H, byy(1) = ATE Y (D)

In order to prove theorem 2-3, it is necessary to introduce
and prove a lemma.
LEMMA 2-1: If Gee(f) is the power spectrum of an ergodic

random process with member function e(t) and if Gee(f)=0,

.

Vi, then e(t) equals zero with probability one for all t.

l PROOF OF LEMMA 2-1: From p. 150, Papoulis (1965), the

Chebycheff (or Tchebveheff) inequality is
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2
Prob {|e(t)-E[e(t)][<e} > 1 - 5 | (2-32)

€
L2 ]
where €>0 can be made arbitrarily small and ¢“ is the

variance or power of e(t). The autocorrelation function

of e(t) is
R (1) = {:Gee(f)ejznfT df (2-33)

but Gee(f)=0, Vf so that Ree(r)=0, Vt. 1In particular

2 2 2
R,,(0) = F[e“(t)]=0 = ¢* + E°[e(t)]. (2-34)
Hence 02=0 and E[e(t)]=0. Alternatively note that the
value of the tuils of the autocorrelation is related to

the mean value of the function. Specifically, (p. 333,
Papoulis (1965))

lim R__(1) = EZ[e(t)] . (2-35)

So since R (t)=0, Vr
ee

lim Ree(r) =0 , (2-36)

T+>

it follows that

Ez[e(t)] = 0, (2-37)
and thus that
Ele(t)] =0 . (2-38)

Thercfore, the Chebycheff inequalitv with sz=o and

Ele(t)]= 0 is

Prob [|e(t)!<e]3 1 (2-39a)
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but 0 < Prob[ ]< 1 so that

Prob [|e(t)|<e] =1 ; (2-39Db)

that is, the probability that |[e(t)| is less than some
arbitrarily small value is one. Statistically, we say

that this event happens '"with probability one'" or we

say that it happens "almost surely." So when the power

spectrum Gee(f) of this random process is zero for all
frequencies, then e(t)=0 with probability one.
DISCUSS1CON OF LEMMA 2-1:

The interpretation of the results can be
misleading for transients (nonstaticnary processes).

For example, consider (see, for example, p. 93 of Lece

(1960) ),
lim__l__fT 2 o0 , i LD
T+» 2T T € (t)dt = Ree(O) = {m Gee(I) df. (2-40)

Now clearly there exists e(t)# O such that

1 2 - .
MO 5=/ e"(t)dt =0 . (2-41)

For example, if a finite energy pulse lasts only a few
seconds, then the power (or "average' energy) in such

a nonrepetitive pulse is zero. This is because

1m ;T 204y gt
Tao T

equals some nonzero constant energy but
lim _1 T 2

Tew 27 [ € (D

e AN ANl S AR 5 i
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equals zero; hence, the power is zero. Transient

situations of this type are disallowed by the ergodicity

1 constraint vhich requires stationarity. (Lrgodic

processes are stationary but not necessarily vice versa.)

The essence of the proof then is that for ergodic random

{ processes almost surely e(t)=0 in that frequency band

! where Gee(f)=0. This is a reasonable practical assumption;
however, it should not be overlooked that there exists a
nonstationary class of processes for which the proof of
LEMMA 2-1 does not apply. We now proceed with the proof
of theorem 2-3.

| PROOF OF THEOREM 2-3: It is instructive to visualize

! the proof as attempting to select an optimum filter such

that the minimum mean squared error (MMSE) is achieved,

where the error e{(t) is defined as e(t)=y(t)-y0:t),

1 as shown in Figure 3-3.

The solution will make no presumptions on the
origin (source) ctf y(t). It is useful, however, to
envision y(t) as the stationary output of an unidentified
¢ system as depicted in Figure 2-4; such a model is a

special case of Figure 2-3, but is perhaps a more common
system identification problem. Whether the error signal
e(t) is generated from Figure 2-3 or Figure 2-4, it

follows that the total power is given by

1 Ty . &
lim=r /2 2004t = ¢ G, (f) af . (2-42)

-T/2 -
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Figure 2-3 Model of Error Resulting from Lincarly

Filtering x(t) to Match Any Desired
Signal y(t)




30

S PR

.. x{(t) | UNIDENTIFIED
| T svstem

LINEAR
— FILTER: H

Figure 2-4 Model of Error Resulting from Linear
Approximation of Nonlinearity
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All power spectra have the property that they are non-
negative. The implication is that in integrating over
the interval (-=,»), there will be no portions of

Gee(f) that will "cancel'" other portions. Solving for

Gee(f)’ it can be shown that

_ 2
Gee(1)=6y (1) + Gyx (1) [H(D) | ) (2-43)

-H* *

H*(£)G} (£),
which can be written, as done by Carter and Knapp (1975),
as

G _(f

)
= P 2 gl - B
S (D)=0ny (D [H(2)- g, | w6 ([1-c (0] (2-44)

Since

Gxx(f) >0, ny(f) >0, and 0 < ny(f) <

it is necessary to minimize

G__(f)
X 2
[H(E) - =517
XX
which is done by selecting the optimum linear filter
G f f ;
H (f) = yx( ) = Iny( )le\]¢yx(f) . (2_45)
o) Gxx(f) Gxx(f)

The optimum filter is a Wiener filter and is discussed
in texts by Lee (1960) and Van Trees (1968). The Fourier

transform of (2-45) is the impulse response
_ ™ j2nfr
hO(T) Sglin Ho(f)e df . (2-46)

In general, ho(r) will be a nonzero for 1<0; hence,
the system will be nonrealizable. Various methods can
be appiied to obtain the cptimum realizable linear filter;

although they are beyond the scope of this thesis, they
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are discussed in standard texts such as Lee (1960) or
Van Trees (1968),

From (2-45) the cross spectrum between x(t) and
y(t),

ny(f) = Ho(f)Gxx(t;, (2-47)

but since x(t) excites a linear filter Ho(f) to produce

output yo(t), it also follows that

Gyox(f) = Ho(f)Gxx(f) x (2-48)

Substituting (2-48) into (2-47) yields

ny(f) = Gyox(f) . (2-49)

Since y(t)=e(t) + y _(t) ,

Ryx(T)

E{ [e(t)+y (t)]x(t-1)} (2-50a)

Rex(r) + R (t) . (2-50b)

Yok

But by taking the Fourier transform of both sides of
(2-49)

Ryx(r) = R () . (2-51)

Yoo
Hence, from (2-51) and (2-50)
R (1) = O,Gex(f)-o; (2-52)

that is, the error is uncorrelated with the input x(t).
This is an interesting property of the error signal

in it's own right. When xi(t) is linearly filtered

by Hi(f) to yield yi(t) for i=1,2, the cross-power

spectrum of the filter outputs is given by Davenport

(1970) as
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f) = H (f)HX(f)G f r -
Gy 3, (1) = B DBSNG, o (D) (2-53)
Hence in the special case where xl(t)=x(t), xz(t)=e(t),

Hl(f)=Ho(f) and Hz(f)=1, it follows that

Gyoe(f) = Ho(f)Gxe(f) : (2-54)

So if the error is uncorrelated with x(t) (that is, if

Gxe(f)=o)’ then it must be true that Gy e(f)=0 (that is,
0

the error is uncorrelated with the output of the optimum

filter). The waveform x(t) being uncorrelated with e(t)

implies that e(t) is also uncorrelated with yo(t).

Further,
Rey(T) = Efe(t)y(t-1)] (2-55a)
but y(t)=e(t)+yo(t) so that
Rey(T) = E{e(t)[e(t-r) i yo(t—T)]} (2-55b)
= Ree(T) + Reyo(r) . (2-55¢)

Recognizing that Rey (t)=0 and taking the Fourier
0
transform of both sides of (2-55) yields

Gey(f) = Ge &4 (2-56)

e
The selection of the optimum H(f) forces (2-44) to

become

Gog(T) = Gy (1) [1 - ny(f)] . (2-57)

When ny(f)=1, clearly (from 2-57) Gee(f)=0, and thus
(from LEMMA 2-1) e(t)=0 with probability one, but

y(t) = y (t) + e(t), (2-58)
so that almost surely,

y(t) =y, (t) . (2-59)
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Thus, with probability one, the linear filter

1o (D) = Hy ((£) = —gﬁ% edbyx () (2-60)
XX

will operate on x(t) to achieve yo(t)=y(t). If the
optimum output yo(t)=x(t) Gat%#t) then by the Fourier
transform relation

Yo(f) = X(f)Ho(f) ; (2-61)
The Fourier transform is a one for one reversible
transformation so that a unique x(t), y(t) implies a
unique X(f), Y(f), but then

Y (f)

Ho(D) = <(ry (2-62)
must be unique. This completes the proof of theorem 2-3.
DISCUSSION OF THEOREM 2-3:

Unique transfer functions do not identify

unique systems. Indeed, nothing is known about the
internal structure of the unidentified system. Further,
the fact that the system can be modeled by a linear
system Ho(f) such that when both (system and model) are
stimulated by an excitation x(t) they yield identical
output y(t) does not prove that the system is linzar
over all inputs. There may indeed be unobservable
nonlinearities in the unidentified system. For example,
suppose the excitation x(t) is stationary but with first
order pdf such that -A <|x(t)|<A. This implies that
X(t) never excites the unidentified system for amplitudes

greater than A; hence, no conclusions can be drawn

about the linearity of the system over all inputs.
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Many "real world" systems are linear over a certain
range of amplitudes and then saturate above that
amplitude as in the case of analog computers
(Kochenburger (1972)). As another example, consider
any stationary x(t). The stationary excitation has
only one invariant power spectrum Gxx(f). Systems
which appear linear for some Gxx(f) but which are
clearly nonlinear for different input statistics are
simple to envision. If a system is nonlinear but the
nonlinearity is not excited (or more generally, not
observed), then the system will appear linear and the
measurement of the MSC will equal unity. 1In essence
then, the class of nonlinear functions is so large that
based on a single excitation (even white Gaussian noise)
it is impossible to claim, without qualification, that

a system is "linear" simply because the MSC is unity, for
all probed frequencies. Another type of nonlinear system
is one in which the MSC is observed to be unity in some
frequency bands and not unity in other bands. Thus
yo(t) # y(t), unless those frequency bands which cannot
be accounted for by linear processing are removed. More
precisely, if ny(f) = 1 in the frequency band (fl,fz)
then with probability one there exists an optimum linear
filter with unique transfer function Ho(f) that can
act on x(t) to achieve optimum output &O(t) where

yo(t)=y(t) o hI(t) and hI(t) is the impulse response of

an ideal zero phase, unity gain "box car' filter that
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passes only those frequencies in the (fl,fz) band.
The whole problem of nonlinear systems can be trcated
by considering what proportion of a system output can
be attributed to a linear operation and what proportion
is due to a residual or nonlinear operation. In
general, the power spectrum of the optimum output
G, , () = [H_(£)]% () (2-63)
Yo dio o} XX
or substituting (2-1), (2-2) and (2-45) into (2-63) yields

Gyoyo(f) = ny(f)ny(f) : (2-64)

This important result (Carter and Knapp (1975)) can be
rewritten as

- 0’0o
ny(f) =% (2-65)

The implication is that the MSC measures the portion
or amount of power (ny(f)) which can be obtained through
optimal linear filtering (in the MMSE sense) of x(t).

Moreover, it is always true (provided ny(f) is defined)

that
G f)y = C £)G f) + |1-C f)|G Yy 2-66
5y, (1) = C, (D)6 () [ xy ()] By (2-66)
Substituting from (2-64) and (2-57) into (2-66)
yields
G _[f) =G f) + G f , 2-67
gy{D = Gy y (D) + Gg(D) (2-67)

vhich implies the power spectrum of the output of a
system is comprised only of the sum of an error spectrum

and an optimum spectrum. This same result can be

noticed from

i
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R (.) =R (t) + R (t) + R (t) + R (t) , (2-68)
yy ee ¥.e ey, Yoy
| but Ry e(r)=Rey (-1)=0,v1 so that
; 0 0
i - 4
Ryy(r) Ree(r) Ryoyo(r) ; (2-69)

Computing the Fourier transform of (2-69) verifies
(2-67),

ik

Just as the MSC measured what portion of G

f
yy( )
could be obtained by (optimal) linear filtering, one

minus MSC is a measure of the portion of output power

" due to an uncorrelated error component; that is,

| Goo(£)

! ﬁﬁ =1 -~ ny(f) (2-70)
Yy

] Thus

4 Gyoyo(f) xy(:) i
: E;;T?T__ 1 - ny(f)

: (This ratio will be important inp the estimation of time

! delay.)

| For practical nonlinear Systems,

the identification of
the optimum linear component is not always obvious.

For eéxample, in :he System without noise described by

y(t)=x3(t)+b X(t), the optimal linear part is not bx(t).

To clarify thig point,

it will pe demonstrated that for
2 limited class of inputs and a limited class of non-

linearities, analytic €xpressions for the optimal linear

part can be obtained.

This offerg interesting insight
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into both the general sys.rm identification problem and
the coherence interpretation problem. First, the
nonlinearity is constrained to have no memory and no
noise, that is,y=n(x). Second, the input processes are
constrained to be separable in the sense defined by
Nuttall (1958). A separable process with second-order
pdf p(xl,xz;r) and mean p is defined as one for which
the integral {:(xiu)p(xl,xz;r)dx1 separates into the
product of a function of Xg alone and a function of
T alone. For example, it can be shown that a Gaussian
process possesses these properties and, hence, is a
separable process.

Under the no-memory nonlinearity and separable
process constraints, it has been proved by Nuttall (1958)

the crosscorrelation between x(t) and y(t) at delay T is

given by
Ryx(r) = K- Rxx(r) , (2-72a)
where
K =5/ n(x)x-w)p(x)dx (2-72b)
o] -0

p(x) is the first-order pdf of x(t), n(x) is a complete
description of the no-memory nonlinear furction, and

o2 is the variance of x(t). Notice that the constant K
does not depend on frequency or delay but only on the
first-order pdf and the nonlinearity. It follows directly

from (2-72a) that, for no-memory nonlinearities excited

by separable processes,
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UGS AT GRS K / G () . (2--73)
G, ()
yy

Comparison of (2-73) with (2-45) and (2-1) shows that
the constant K is the optimum linear filter in tho

MMSE sense.

As an example, suppose x(t) has a Gaussian

2 :
zero-mean, o¢— variance pdf; then

S 2 2
K =-!§ I n(x)x 1 o %X /2 dx. (2-74)
0 - 00

Zwoz

Whenever the pdf is even and n(x) is an even function,
K=0 so that the coherence is zero. However, when n(x)
is an odd function, K does not necessarily equal zero
ezven though the unidentified system is nonlinear. For
example, when n(x)=x3(t)+b><(t), application of (2-74)
yields K=302+b. Therefore, the optimal linear part of
x>(t)+bx(t) is not bx(t) but rather y_(t)=(b+30%)x(t)
for a zero mean Gaussian process with variance of 02.
For b=0, it follows that K # 0 and ny(f) # 0 provided
G, (f) # 0. However, if b=-30°, then K=0 and C,y(£)=0.
Thus, the MSC may still be zero even though the non-
linearity is not even. A computer simulation of the
example with 02 =1{2 and b=-:y2 was conducted, and the
results verified the theory (Carter and Knapp (1975)).
This result can be independently verified by calculating
ny(r) = E{x(t)[xs(t-r)+bx(t-r)]}, which for Gaussian
prccesses is 302Rxx(1)+bRxx(r). Therefore, ny(f)=0 if

b=-302, and there is no power in the optimum linear part
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of the nonlinearity n(x) = x3(t) - 302x(t).

Parenthetically, we note that another approach
to this problem is to expand the no-memory nonlinearity
n as an infinite series of orthogonal polynomials,

specilically,

y(t)y =nlx(t)] =7 aH [x()], (2-75a)
n n

Il > 8
o

where the He (x) are e Hermite polynomials (see, for
n
example, p. xxxv, Gradshteyn and Ryzhik (1965))

H (x)=1, H (x)=x, H (x)=x2—1, H (x)=x3—3x
e e e e
o 1 2 3
and in general
Hp (x)=xH“ (x)-nHe (x) . (2-75h)

n+l n n-1
Then, the crosscorrelation between x and y is given by
va(m) = i unE{x(t)Ho [x(t-0)]1 . (2-76)
; n=0 n
The advantage to this method is that, if the family of
correlations
Rx

i, (07 E{x(t)den[x(t-T)]}, n=1,2,...  (2-77)

n

had been computed once, orthogonal expansion of n(x)
makes ny(r) immediately apparent by a simple weighted
summation.

It is perhaps germane to clarily the significance
of knowing that the MSC is unity. Just as ny(f)=1 for
all f ensured that there was some linear filter that
mapped x{t) into yo(t)=y(t) exactly, there also exists

a linear filter which maps y(t) into x(t) exactly. That

!
i
L &N
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is, since |G (f)l2 = |G (f)'2 G._(f) =€ _¢r) mad
o Xy yx' b Ty yX

conclusions drawn with regard to x(t) and y(t) have
an analogous relation between y(t) and x(t). Thus,
even though one cannot make unqualified statements
about the unidentified system, there certainly exists
a total detailed knowledge of its output for a given
input and therefore, all of its output statistics when
the MSC is unity and the input remains unchanged. All
this is accomplished through the utilization of a
linear (though not necessarily realizable) model.
2B3. Measure of Signal-to-Noise Ratio

The coherence can be used for determining SNR
as will be discussed in this sectien. The results of
this section are of interest from two points of viow.

First, the SNR is a fundamental concern in the basic

passive detection problem and parameter estimation problem,

and second the results of this section will aid in the
interpretation of optimum delay estimation and variance
of the estimate of coherence phase. Hence, while these
results can be derived incependent of the time delay
estimation problem, they will form an important role in
the understanding of how to estimate time delay or
source bearing.

When x(t) is linearly filtered to yield output
y(t) and the output is corrupted by uncorrelated addivive

noise, as depicted in Figure 2-5, then the noise power

spectrum is

M s ot i

|}
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Gpp (1) = Gy (£) [1 - ny(f)] . (2-78)

This is an intuitively satisfying result since the MSC
is unity if there is no noise, whereas the MSC is zcro
when the output is all noise. For linear systems,
additive noise uncorrelated with the input reduces the
MSC according to the ratio of Gnn(f) to ny(f).
Measurement of Gnn(f) is useful not only in the image
processing problem discussed by Cannon (1974) but also
in studying the gross effects of digital filtering when
viewed as a perfect filter plus additive noise (James
(1975) and Weinstein and Oppenheim (1969)). These
methods can also be applied to studying special problens

such as fast Fourler transform (FFT) noise (Ferrie and
Nuttall (1971) and Rabiner and Rader (1972)).

The power spectrum from the output of an arbitrary
system can always be viewed in terms of its two components
G f f dG )| 1-C f regardless of how

yy( )ny( ) an yy( )[ xy( ﬂ g
ny(f) is produced (as long as ny(f) is defined). It is

interesting to note that the ratio cof these components

G (f) ~
Yo¥o | Ggp(D) Gy (D) (2-79)
g = f
Gee(f) Gnn(r) il ny( )
can be considered as either the SNR or the lincar to-

nonlinear ratio, depending on the application.
For situations like those shown in Figure 2-5,
the coherence measures what proportion of an unidentified

system output is "linear.' Through the use of (2-79),

the M3C provides a comparison of the proportion of system

sk ekt

=
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power that is linear with the proportion that is
nonlinear in exactly the same way in which the SNR

was measured for the output of 5 lineatr sysiem corrupted
by additive noise. However, in other system
configurations, such as that shown in Figure 2-6, where
noise and signal have a different interpretation,
relation (2-79) will not be useful. Figure 2-6 is of
interest to the sonar community since it is analogous
to the physical situation in which signal s(t) from an
acoustic source is received at two geographically
separated sensors. Each observed signal is corrupted
by additive stationary noise and is linearly filtered.
When nl(t) and nz(t) are uncorrelated but have the same
power spectra Gnn(f), the SNR, Gss(f)/Gnn(f) is readily

shawn to be

Gss(f) _ ny(f)

Gnn(f) ) 1"[ny(f)

which differs from (2-79). (Note from (2-19) that

(2-80)

C (£f)=C_ _(f).) Ironically it will turn out to be
rr, Xy’

(2-79) and not (2-80) which is critical to our problem.
In cases where each transmission path attenuates the
source signal differently, the model must be changed
to reflect an attenuation in one channel. Unless
simplifying assumptions are employed, the net result

is that Gss(f)/Gnn(f) cannot be determined from ny(f)

unless attenuation in each path is known. (S8ee

section 4 of appendix B.)
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More generally, the source is transmitted
through two ocean medium operators Hl(f) and Hz(f)
as shown in Figure 2-7, which can attenuate the signal
differently at different frequencies. For illustrative
purposes, we assume that the ocean medium operators are
linear time invariant filters. Thus sl(t) and sz(t)
are the outputs of filters Hl(f) and Hz(f), respectively,
which have been excited by source s(t). This model of
linear filters and noise is mathematically tractable
and has been proposed before, as for example, on
p. 389 of Whalen (1971). (More sophisticated models are
given by Kennedy (1969).) When the noise ni(t) is
uncorrelated with the signal si(t), the power spectral

density at the output of the i-th sensor is given by

G, . (£) =G (DU ()% + 6 . (f), i=1,2 (2-81a)
11 11

G (t) + & (f), i=1,2 . (2-81b)
S84 n;ng

Further, the ratio of the power at the output of the
filter to the corruptive noise power depends on the MSC
between the source and the sensor. Specifically, from

equation (8) of Carter, Knapp and Nuttall (1973a) cr

(2-79),
s.s.(f) Csx.(f)
i _ _ = 1 1=1 3.
n.n.(f) LS Csx.(f) ’ (2-82)
1= i

(Note that when lHi(f)l=#1, (2-82) does not measure the

ratio of source to noise power.) The coherence between




() Cu

(3 &x

v

47

(9 CH

(1) bx
s

() bu

Yo W e o e - - g e e

(3 M

9STON 9A111PPY

}O 20uasaad 2yl ul poatasqQ sindiny Yyirim
SI81[1J JUBTIJIBAU] DWL] JESUTT OM] SUIATJI(Q 824NOSg .-G 94n314

s




T TeT

48

xl(t) and xz(t) ir Figure 2-7 when and nl(t) and

n2(t) are uncorrelated is given by

G _(£)H, (f)HX(I)
Y (f) . SS 1 5 i (2—83)

X, X
2 G (£)G ()
Vr Fig X9X9

1
In order to relate this result to the coherence

between the source and each sensor, note that

G (£YH.(T)
SSs i
Toey CHI= , i=1,2, (2-84)
Sxi J Gss(f)Gx.x.(f)
i%i
so that
Yxlxz(f) = stl(f)vs;z(f) . (2-85)

Taking the magnitude-squared yields

Cx x2(f) = € (£) . (2-86)

sxl(f)csx2

1
Thus, when a4 source drives two linear time invariant
filters whose output is observed in the presence of
uncorrelated noise, the MSC between the outputs can

be no larger than the MSC between the source and any
sensor. In particular, for two sensors the MSC is

th> product of the two source MSCs, as given in (2-86).
However, it is possible to have a source transmitted
through some nonlinearity such that the MSC between

s(t) and xl(t) is low and the MSC between s(t) and

x2(t) is low and the MSC between xl(t) and x2(t) is high.
For example,suppose s(t) is a member function of a

stationary random process which is separable in the

Nuttall sense. Then the MSC between xl(t) = s2(t) and
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s(t) 1is zero; similarly the MSC between x,(t) = s2(t)
and s(t) is zero; however, for this example, the MSC
between xl(t) and xz(t) is unity. Thus,care should
be used in interpreting these results since they apply
only to the case where the medium can be accurately
modeled by linear time invariant filters corrupted by
uncorrelated additive noise.

Using (2-86) we can compute a SNR squared quantity,

namely,
¢ ()
Gslsl(f) Gszsz(f) - x1x2 . (2-87)
G (F) G (1) 1-c__ (D)li1-c__ ()
il lig'ts [ SXy ][ SXq ]

To be useful (2-87) requires knowledge of the source to

sensor MSCs. However if C__ (f) = C__ (f) =[c (f)]é,
. le sz xlxz

then it follows that

G_ . (£)G_ _ (D)3 C_ . (1)
S4S SaS X, X
151 252 ) V Sy, . T

G (£)G (f)
nln1 NNy 1 —“lexz(f)

The results on coherence from this chapter will

add to the understanding of the role of coherence in

ML estimation of time delay as will be seen in the next

chapter.
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CHAPTER 3
MAXIMUM LIKELIHOOD ESTIMATE OF TIME DELAY

In the first section of this chapter an ML
estimator is derived for determining time delay between
signals received at two spatially separated sensors in
the presence of uncorrelated noise. This ML estimator
can be realized as a pair of receiver prefilters followed
by a crosscorrelator. The time argument at which the
correlator achieves a maximum is the delay estimate.

In the second section of this chapter, the variance of
the time delay estimate is derived and compared with
the Cramér-Rao lower bound, and in the final section,
various realizations of the processor are considered.

3A. Derivation

For the purposes of the derivation, a signal
emanating from an acoustic source and monitored in the
presence of noise at two spatially separated sensors
can be mathematically modeled as depicted in Figure 3-1.
Mathematically,

xl(t)=sl(t)+n1(t) (3-1la)

xz(t)=usl(t+D)+n2(t) , (3-1hH)

where sl(t), nl(t), and n2(t) are real, jointly stationary

50
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random processes. The delay, I, is the unknown parameter

to be estimated. Signal sl(t) is assumed to be

uncorrelated with noise nl(t) and nz(t). Later we also

ass.me nl(t) and nz(t) are uncorrelated with each other.
fore generally, it may be assumed that sz(t)

is liicarly related to sl(t) by the transfer function

H(£)=]a(£)|e 92" Thus, unlike (3-1) where the
. . .y ~j2nfD
Fourier transform of the system output is asl(f)e :
-j27fD,

the output transform in this case is la(f)lsl(f)e
The linear phase characteristic of such a system is
assured when the impulse response is symmetric about
t=D. For realizable systems, this implies that thne
duration of the impulse response must be finite. Thus,
in a sense, we are estimating the midpoint of a symmetric
finite i1mpulse response (FIR) filter depicted in
Figure 3-2a. Such an impulse response is rot necessarily
peaked at D (as for example in Figure 3-2b). In the
derivation which follows, then, a can (more generally) be
interpreted as a frequency dependent attenuation |a(f)].
There are many applications in which it is of
interest to estimate the delay D. This chapter derives
an ML estimator and evaluates its variance., Chapter 4
compares the estimator with other similar techniques.
While the model of the physical phenomena presitzio
stationarity, the techniques to be developed herein may

be employed in slowly varying environments where the

characteristics of the signal and noise remain
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statlonary onlv for {inite observation time T. Further,
the delay D and attenuation a may also change slowly.
The estimator is therefore constrained to operate on
observations of a finite duration. Having estimated the
delay, an estimate of the bearing may be obtained by
mapping the delay estimate according to (Nuiitaii, Carter

and Montavon (1974))

~

@ = arc cos —552— ]

(3-2)
where £ is the nominal speed of sound in the non-
dispersive medium and d is the sensor separation.

(Ssee pp. 93-103 of Urick (1967)) A rigorous derivation
for the ML estimator of D using the mathematical model
(3-1a) and (3-1b) requires that signal and noise spectra
be given (that is, known). (See Hannan and Thomson
(1971).) When they are unknown, a heuristic procedure

of estimating these spectral characteristics is suggested.
The ML estimator of delay can be realized as a pair of
receiver prefilters followed by a crosscorrelator, The
time argument at which the correlator achieves a maximum
is the delay estimate. Qualitatively, the role of the
prefilters is to weight the signal passed to the
corre.ator acco.Jing to the strength of the coherence
function. This weighting turns out to be equivalent to
that proposed by Hannan and Thomson (1973) and under
simplifying assumptions to that proposed hy MacDonald

and Schultheiss (1969),but appareatly differs from the

results of Clay, Hinich and Shaman (1973). However, the
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development presented here does not presume initially
that the estimator is a GCC function, Rather, it is
shown that the ML estimate may be realized by prefiltering
and crosscorrelating the data xl(t) and xz(t). Indeed,
other realizations of the ML processor are also possible.
(See section 3C of this chapter.) For example, the data
can be appropriately iiitersd, summed, sauared and
averaged in order to estimate the delay. This latter
processor follows directly from the derivation presented
here and is discussed fully in 3C,

To make the model (3-1) mathematically tractable,
it is necessary to assume that sl(t), nl(t) and nz(t)

are Gaussian. Denote the Fourier coefficients of xi(t)

as
X.(k) = & 1 T x. (tye K4t (3-3a)
i p e Xy
where
Y
T (3-3b)

Note that the linear transformation Xi(k) is Gaussian
since xi(t) is Gaussian. In practice, the integral will
be replaced by a discrete Fourier transform (DFT) or

FFT. When the number of data points in each FFT is large
(as will vusually be the case) then, by a central limit
theorem argument, Xi(k) will tend toward being Gaussian

1

even if the xi(t) are not Gaussian. This presumption

1These observations were brought to the authors
attention by Dr. G. Mohnkern of the Naval Undersea Center,
San Diego, California .
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is borne out by Benignus (1969b). Hence, the
requirement that sl(t), nl(t) and nz(t) be Gaussian
is not a strong requirement.

As the observation time T+w,

T x; (k) » ii(kwA) .

where ii is the Fourier transform of xi(t). A more
complete discussion on Fourier transforms and their
convergence is given in Davenport (1970), Jenkins and
Watts (1968}, Koopmans (1974), Otnes and Enochson (1972),
Bendat and Piersol (1971) and Brillinger (1975). From

MacDonald and Schultheiss (1969), it follows for T large

compared with |D| plus the correlation time of RS o (1),
11
that
Le
E [X,()Xg(0] = { " X Rof el o = (3-4)
0 , k#L
Note that E[Xi(kﬂ = E[xi(tn =0, i=1,2,
Now let the vector
X(k) =[x, (0, %,000] " (3-5)

where ' denotes transpose. Then the covariance o X(k)

is

' Xy (k) X} (k) X (K)X$(K) (3-6)
E | X(k)X* (k){ =E -
[_ - X (K)X¥(k) Xo (k)XE (k)
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Gx (kwA) Gx X (kwA)

X4 1%2

1
(3-7)

il

1
T

* *
lexz(kwA) zexz(kwA)

é "% Qx(kw[\) ’ (3-8)

where Qx(w) is the spectral matrix of [xl(t),xg(t)]'.

The vectors X(k), k=-N,-N+1,... ,N are, as a

consequence of (3-4), uncorrelated Gaussian (hence,

independent) random variables. More explicitly, the

pdf for X = §(—N),§(-N+1),...,§(N), given attenuation
a and delay D is1
p(X[a,D) = heexp - 5 Iy (3-9)
where
N . 1 2
3, =L X (00, (keXO)T (3-10) |
k=-N i

and h is a function of |Qx(kwA)\ (Van Trees (1968)).

Replacing TXi(k) by ii(kwA), the Fourier transform of

xi(t), it follows from (3-10) that
N e B
o=t % e Qs (kw X (ke e
T Wp )y (REQIZARERTT

(3-11)

The ML estimate of D (see, for example, Jenkins and Watts

(1968) or Van Trees (1968)) is the value of D which

maximizes p(X|a,D).

IpMore explicitly, since the density function depends
on Q_, one could write p(X|a,Q, ). This notation obscures
the role of the delay but_clar§fieﬁ the need to know (or
estimate) signal and noise speclra. Further, if a=|a(0)]
then the pdf is conditioned on knowing 1a(kwh)1, k=-N,

~NEl;:e:ple
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In general, the parameter D affects both h and

J1 in (3-9). However, for uncorrelated noise in (3-1),

h is independent of the delay.

For large T, (3-11) becomes

g2 g*'(f)Qx-l(f)i(f)df : (3-12)

- 00

From (3-6)-(3-8),

%o %%
g
o (D=
_lexz(f) lexl(f)
P (3-132a)
G (£)G (f)-1G &)
X1%4 XoXg X3 %o |
G £),-G £)/fc £)-G £
/ x1x1( ) xlxz( 7« x1x1( ) x2"2( )}
1

1/G () 1,
1%2 ¥9Xo

= : (3-13b)
T-C12(0))
12
G* (f}élexl(f)zexz(f)>

where C,,(f)=C (f), which will exist provided
12 xlx2 2

Clz(f) #1; that is, xl(t) and xz(t) cannot be obtained
perfectly from one another by linear filtering

(Carter and Knapp (1975)), or equivalently for the model
(3-1) that observation noise is present.

When Cn ” (f)=Gn A (f)=0

=2 172
G (f)=G (£)+G (f) , (3-14a)
xlxl slsl nlnl
2
G (f)=a"G (£)+G (f) , (3-14b)
XoXo $1S n,n,
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~jentp
(t)=aG_ _ (f) e , (3-14¢)
X1%9 S
Clz(f)=a2GS . (f)/Gx L (DG (£) (3-14Q)
=1 1*1 o)

and it follows that

e XM HQT (HX(D)Af=J, 4T, (3-15a)
where

[Ix () X (£)]2

J |Xo | - 1 af .,  (3-15B)
_mL o 1(f) zexz(f) 1 = & ()
= f A(E)+AT(f) df, (3-15¢)
*

> ~ ¥ Gx1x2(f)

AT)=R (DRE(E) . —— : (3-15d)
2 lexl(f)zexz(f)[1-C12(fh

In order to relate these results to Hannan and
Thomson (1973) and others and interpret how to implement
the ML estimation technique, note that for xl(t) and

*
xz(t) real, A (f)=A(-f). Then (3-15¢) can be rewritten as

[oe) [eo] [s o}

= [ A(f)df+ [ A(-f)df=2/ A(f)df . (3-16)

-0 - 00 -0

Letting TG. _ (£)8X. (f)Xo(f), (3-16)and (3-15d) can be
XX, 1 2

written as

Sl 1 v Cip(h) L2710

2T f G, x () df . (3-17)
X1%g [4k1x2(f)| [1-Cy (1))

-Jg=

Notice that the ML estimator for D will minimize

but the selection of D has no effect on J,.

J1=datds
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Thus, D should maximize -J3. Equivalently, when
il(f)i;(f) is viewed as T times the cstimated cross-

(f), the ML estimator selects as

power spectrum, e
®1%g

1X

the estimate of delay the value of 1 at which

o ~ Cyp(1)
(ML) 1 12 janfr
R (1)=/ G (1) T e df 3-18
Y192 - X1%9 Fx1x2|l1-c12(f)] ’ ( 2)
where . .
~ X, (1)X3(£)
G o (Eym=——-= (3-18b)
*1%2 T

achieves a peak. That is, the ML estimator selects as
the estimate of delay the value of 1 at which the GCC

RE (1) =176
X9 %9 o %9

xZ(f)wg(f)ejz““df (3-19)
achieves a peak, where Wg(f)=H1(f)H§(f) is an appropriately
selected weighting function (Knapp and Carter (1976))

The ML estimator is equivalent to one proposed by Hannan
and Thomson (1973). The ML estimator can be achieved as
depicted in Figure 3-3 by shaping xl(t) with filter

Hl(f) and xz(t) with filter Hz(f) then crosscorrelating

the filter outputs and observing what value of delay
achieves a maximum. The estimator can also be achieved

in other forms. (See section C of this Chapter.) The

weighting proposed by Hannan and Thomson (1973) is

.| Gt (3-20)
i S.x, (D] 11 - e
1%2 12

where (as required for Qx-l to exist) C12(f) # 1. Such
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Figure 3-3 Received Waveforms Filtered, Delayed,

Multiplied, and Integrated for a
Variety of Delays until Peak Output
is Obtained
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weighting achieves the ML estimator. When IGK « ()]
172

and C12(f) are known, this is exactly the proper
welghting., An important consideration in estimator
design is the available amount of a priori knowledge

of the signal and noise statistics, In many problems,
this information is negligible. For example, in passive
detection, unlike the usual communications problem,

the source spectrum is unknown or only known approximately.
When the terms in (3-20) are unknown, they can be
estimated via techniques of Carter, Knapp and Nuttall
(1973a), which are summarized in appendix A and
programmed in appendix C. Substituting estimated
weighting for true weighting is entirely a heuristic
procedure whereby the ML estimator can approximately

be achieved in practice. Such techniques have been
referred to as approximate ML (AML) techniques by Box
and Jenkins (1970) since they are not, trulv speaking,
ML estimation techniques.

Since the estimation of delay may, in practice,
be governed by an AML rather than an ML technique, we
should not expect that more complex models will yield to
ML techniques without similar heuristic approximation.
Rather, the estimation of D with moving sources, for

example, will also require AML techniques and may

be even more prone to varying interpretations,.

i
3
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3B. Variance ol General Time Delay Estimator

The crosscorrelation form of the processor is
useful in ascertaining the statistical characteristics
of the delay estimate. For each of several different
trials a different estimate of delay might be obtained.
For example, when the true delay is about 5.0 seconds,
six typical trials are sketched in Figure 3-4. One
actual example case is given in appendix D, 1In
ascending orders, values of ﬁ are 4.5, 4.9, 5.0, 5.1,
5.3 and 5.7. For trial number 5, depicted on the
Figure 3-4, an estimate 4.9 is obtained. However,
there appear to be many ambiguous peaks in trial 5;
indeed if the noise had been slightly different, there
could have been a different delay estimate, such as:
4.1, 5.7, or 6.5; such an error would increase the
variation of the time delay estimate, The derivation cf
variance of 6, which follows, does not account for errors
due to ambiguous peaks. It presumes that the estimated
delay is in the neighborhood of the correct delay and
nd2t on a secondary peak.

A lower bound on the variance for any delay
estimator (which is not necessarily attainable) is given

by the Cramér-Rao bound

-1

E azlnjl(x &, 1)

812

(3-21

=D




64

TRIAL

Y fiss, T

i \j\,-\/\./h‘\/\/\l 55 =2 N Nl

2 Fid

\]V\/\] =T W

; M«\/\/\/\/

1 Figure 3-4 Six Hypothetical Correlator Outputs
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Cramér —Rao bounds are discussed in Van Trees (1968)
and Sage and Melsa (1971). The only part of the log
pdf that depends on 1, the hypothesized delay, is

J3 of (3=17): That 1s,

2

2
E {é—g 1np(x a,T)} = _§§ E(:lJS) . (3-22)
‘9T 3T
1f G (D)=|G, (f)le‘Jz"fD, then since
7 %9 1%2
E[G. . (£)|=G. _ (f) , it follows that
[ 152 ] *1%2
. Cyo(1)
71 j2nf(v-D) —="———df . (3-23)
E( 2J3)-T£me 1 - ¢yl

Hence, the minimum obtainable variance for delay

estimation is (Carter and Knapp (19762))

=1
A w C.o(f)
Minimum Ver(D)= |T/ (2nf)°—12 ar | (3-24)
= [1 - Cyqp ()]

For the GCC processor with any weighting
Wg(f)=H1(f)H§(f) we will derive an exprégsion for the
local variation of the delay estimator and show that
the ML weighting, (3-20), indeed achieves (3-24). The
determination of the variance of delay, estimates closely
parallels a clever method of MacDonald and Schultheiss

(1969). Equivalent to the Var D =Var 1 .=y (Shown in

Figure 3-5) is the left to right variation of the zero

crossing of the derivative of the GCC function output
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with respect to 1 (shown in Figure 3-6). Typical mean
output of the derivative of the correlator output, 7,
is plotted in Figure 3-5 together with similar curves
o, above and below the mean. For o, small, so that
curves are approximately linear between D-cﬁ and D+Oﬁ'

the magnitude of the expected value of the slope of the

output at the true value of delay is given by

| 3 52 ~g %
—F z] =|l—= E R (T) = == , (3-25)
a1 | aT2 X1 Xq e

=D =D
where o denotes standard deviation. Again using

G -—1' -~ g = : .
E!?xlxz(fﬂ"T ELXI(f)Xz(fq G (f), it follows with

X1%2
~321D 4 yat

Gx x2(f)= Gx x2(f)ie

1 1

[o2]

2 1,
3—5 E[Rg (rﬂ =T/ (2nf)2 Gy 5 (1)[W (£)df.(3-26)
D

- 1%*2
In order to solve (3-25) for OTEGﬁ it is also

necessary to solve for cz in Figure 3-6. The fundamental

problem is to find the variance of the random variable

Z given by
T

z = [ yl(t)yz(t)dt . (3-27a)
o)
(For our particular problem we will later assume that
yl(t) is the output of a filter excited by xl(t) and
y?(t) is the output of a filter excited by x2(t).)

The variance of z is given by
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Figure 3-6 Derivative of Typical Output of Genceratizoed
Correlator
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o2 = E(z’) -E? (2], (3-27b)
where
E[z] = E [/ | yy(t)y,(t)dt] (3-27c)
(o]
T
= I E[y,(t)y,(t))dt (3-27d)
(o}
= TRy, (0) (3-27e)
and

I
E (Zeiis fofo E[yy(ty)y5(t )y (ta)y,(ty)1dt dt, . (3-27f)
Evaluation of the fcurth moment in (3-27f) can be achieved

under Gaussian assumptions. In particular, if yl(t)

and yz(t) are jointly Gaussian (and stationary), then

E[z = 0)+R -t,)R t,-t
(2%) f ! [ y1y2( ) y1y1( 17tg)Ry y, (t1-tp)
+ R R -t dt,dt 3-27
Letting r=t1—t2 and using (3-27b) and (3..27e), (3-27g)
becomes
=/ [
z y, A (T)R R, (t)R (t)].
= = [ylyl Y2y2(T)+ J’IY2 Y2yl ]
‘{’(r+t2)\}'(t2)drdt2 ’ (3-27h)
where
¥(t) = 31 , be(@,T)
0 , elsewhere .

Integrating (3-27h) with respect to tq and manipulating

yields

2 T z
= R 1-=)dr .
Oy =T {T‘%ylyl(T)Ryzyz(T)+Ry1y2(r) Yzyz(rﬂ( v (i)

o A A s i
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For large T (3-271)

2~ o
o =T/ (R (T)R (1)+R (T)R (-t)dt . (3-273)
z —o ylyl Y2Y2 y1y2 YIY2
By Parseval's Theorem

N 2
=T G £)G (£)+G df . 3-27k
o, S 16y g (D) (DG, y (D)) ( )

- 1 Vo¥o
If yl(t) is the output of a filter Hl(f) cascaded with a
differentiator and y2(t) is the outnut of a filter Hz(f)

cascaded with a variable delay, then

_ 2 2 )

Gylyl(f) |H1(f)| (2nf) lexl(f) (8=271)

G (£) = |H (f)lzc (£) (3-27m)
Y2y2 2 x2X2

* . j2nfr ]

f = f b ). 3-2 j

Gy1y2( ) Hl( M, (f)e cxlxz( ) (3-27n)

For 1=D it follows, from(3-27k) - (3-27n), since

, %*
§,(£)=Hy (1)Hy(T), that

| o 2
2 4 2 - e
Wg(f (2mf) lexl(f)Gx?xz(fXI—Clz\x)]df.(o—27o)

o =T/f
z -

=D

[eod

Combining (3-25) through (3-270) yields

2 )

o > 3
o (2nf) Gx1x1(f)Gx2x2(fx1-C12(fﬂ}

W (f)
g (3-28)

y

“T‘—'D 3 © 2‘
(T) f (2nf) |G (f)
% | ™6

Wg(f) df

which is valid for any Wg(f). By substituting the
appropriate weighting function into (3-28) the standard

deviation of time delay estimates from each processor
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can be analytically evaluated,
Parenthetically, we note that the results (3-28)

with a particular weighting (3-20) can be related to

(?20) of MacDonald and Schultheiss (1969) as follows.

Define the bearing to an acoustic source, similar to
(3-2), as
€ /
0= arccos\%?) , (3-29)
where £ is the (nominal) speed of sound in the

nondispersive medium. Consider the case where the

estimated D equals the true delay D plus a perturbation

i n. By a Taylor series expansion it follows that

‘ arccos[g (D+n)];arccos[%D]+ J% arccos(%?) (b-D) . (3-30)

dD -
D=D
Thus the bearing error
1
4
ey = arccos[%(D+n)] - arccos(éD) (3-31a)
t' = -—-—§—(D-D) , (3-31b)
; ! dsind
‘ and 3 3
E(ei(t)) o [Var ﬁ] . (3-32)
dsin®

. The term dsinf can be viewed as the effective array
length (sensor separation) physically steered at the
source. Assuming equal noise spectra, combining (3-32)
] i with (3-28) and (3-20), and introducing a change of
variables yields an expression which agrees with (20)

of MacDonald and Schultheiss (1969) wha2n 8 is interpreted




as source (not wavefront) angle, Combining (3-28) and
(3-32) suggests that in order to reduce to variance of

‘ {he bearing estimate the observation period and the

| gensor separation should be made as large as possible.

3 (In practice, there will uncdoubtedly be limitations on

‘ both sensor separation and observation time.) Further,
since (3-32) depends on the effective array length
physically steered toward the source, this suggests the
desirability of sensor mobility to maximize the term
dsin®b.

It has been shown that the variance of the time

delay estimate in the neighborhood of the true delay,

for general weighting function Wg(f) is given by

\wg(f)l (2nf) lexl(f)Gx xz(f)E-clz(f{]df

J B . 2

} é var = . ; ’(3-33a)
] T[f c2r)2le. . (D)W () df]

; | o Xy %g g

L |

] { which for real processes may also be written

; Wty 6. . (£)G (f)P—C (fﬂf df

1 g I g X, X X, X 12

| s - La ol 2% . (3-33Db)
: an2e (7 lo. . (D)W (£)f?ar :

E 4 [ (o] ’xlxz g ]

Notice that a scale factor change in Wg(f) does not
change the variance of the delay estimator.

The variance of the ML processcr is
varll B =2t /o(2ah)2c, (D) /[1-C_ (f)ydf . 3-34
ar i n 12 )/[ -12( yydfy ' (3-34)
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i which is the Cramér—Rao lower bound (3-24). It should be

reemphasized that (3-33) and (3-34) evaluate the local

variation of the time delay estimate and thus do not

account for ambiguous peaks which may arise when the

averaging time ls not large enough for the given signal

E and noise characteristics. Indeed, when T is not

! sufficiently large, local variation may be a poor
indicator of syvstem performance and the envelope of the
ambiguous peaks must be considered1 (p. 40 of MacDonald
and Schultheiss (1969) and p. 41 of Hamor and Hannan
(1974)). Further, (3-33) and (3-34) predict system

| performance when signal and noise spectral characteristics

| are known., For sufficientiy large T, these spectra can
be estimated accurately. However, in general, (3-33)

and (3-34) must be modified to account for estimation

I errors; alternatively, system performance can be
evaluated by computer simulation. Empirical verificaticn
of expressions for variance has not been undertaken by
simulation, because to do so without special purpose
correlator hardware would be computationaliy prohibitive.

- For example, for a given G (r), 6 (f), G Ty,
3 slsl nlnl n2n2

o, and averaging time T, an estimated GCC function can

be computed, from which only one number (the delay

IThese observations were brought to the author's
attention by C. Stiadling and R. Trueblood of the Naval
Undersea Center, San Diego, California.
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estimate) can be extracted. To empiirically evaluate
the statistics of the delay estimate (which would be
valid only for thesce particular signal and noise spectra)
many such trials would need to be conducted. We have
conducted one such trial (with T large) and verified
that useful delay estimates can be obtained by inserting

and C.,{f) in place of the true

estimates C1af

G ()
¥4 %9

values in (3-20). This might have been expected since
the estimated optimum weighting will converge to the
true weighting as T+, (The statistics of the MSC
estimates are given in appendix B.) 1In practice, T
may be limited by the stationarity properties of the
data, and (3-34) may be an overly optimistic prediction
of system performance when signal and noise spectra are
unknown.

With these qualifications in mind, consider the
following example of computing the variance of the ML

time delay estimate. Let

C12(f) =’C 5 fe(0,B)
0, otherwise

Then

ML 1

3
2. B C
8n°T 5 [_I—C]

The strong dependence of the estimator variation to the

coherence is illustrated in a plot of lég versus C in

(o))

(3-395)

Figure 3-7. Note since

L
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Figure 3-7 Variance of Delay Estimate as a Function
of Coherence for Fixed B and T
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C 2

; = = C [ 1+CsC

... 1 (3-36)

that for C<<1, (3-36) is

—= =C . (3-37)

But for C=1-A, where A<<1, then

1-A

1-C A

|o

(3-38)

>
i
—
e
>

An approximate comparison of C=0.01 with C=0.99 shows
the variance changed not by a factor of 100 to 1 but
10,000 to 1. The implication is that weakly coherent

' signals do not contribute much to reducing the variance

{ of the dela” estimate. That is not entirely so but is
roughly correct. For example, high frequency, low
coherent power may be important. A more complete

1 discussion of the variance of several proposed time
delay estimators is given in Chapter 4. Prior to

Chapter 4, we will discuss other realizations of the

PR

ML delay estimator.

3C. Other Realizations of the ML Estimator

T P

This section of Chapter 3 will present four methods

for implementing the ML estimator for delay. One (and

only) of the methods, the one considered to be most

] promising, has been programmed.(See appendix C.) The

program presumes that signal and noise waveforms are

real and Fhat their statistics are unknown; hence the

program uses appropriate estimates in lieu of known
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values, when forming the weighting function.

The first realization which comes to mind is &

bank of allowable delays as depicted in Figure 2-8.

Each data waveform xl(t) and xz(L) is filtered by Hl(f)

and Hz(f), respectively. The output of Hz(f) is

delayed for several reasonable values of delay depending

on the resolution desired, a priori knowledge and
processing cost allowed. Each delayed output is multiplied
with the output of Hl(f). After integration for T seconds,
the delay that yields the maximum award is the estimate

of delay.

The second method is to realize that the bank of
delays in Figure 3-8 corresponds to a particular method
for computing the GCC function. Indeed we need not he
particular about the details of how the GCC function is
estimated so long as it is estimated "accurateiy."

The second method uses the overlapped FFT method
presented by Carter, Knapp, and Nuttall (1973a) to
compute the estimated cross spectrum and MSC. The
estimated cross spectrum is appropriately weighted and
inverse transformed via an FFT to obtain the estimated
GCC function. The delay where the GCC peaks is the
estimate of delay. One advantage to imethods 1 and 2 is
that by computing the crosscorrelation for a large
range of delays the presence of more than one delay
(acoustic source) can be observed. There are other

advantages, too; in the GCC method uncorrelated cross

e O LK A i A B AL P

R

s
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terms vanish and there is no unknown residual bias to
account for when establishing thresholds (other than
the type discussed in appendix B).

If we desire to use a closed loop control scheme to
automatically adjust the delay estimate ﬁ, we can
instrument the estimator with a derivative in one
channel much like our discussion of the variance of the
estimator.1 When we are in the neighborhood of the
correct delay, the output in Figure 3-9 should be
approximately zero. Any difference from zero (that is,
error) is fed back, perhaps smoothed and scaled, and
used to adjust the delay estimate in order to drive the
system output to zero. For estimating more than ocne
delay (acoustic source) with this realization, more
than one variable delay is required. It should te
noted as pouinted out by Kochenburger (1972) that
differentiation is a "ncisy" process which should be
avoided. However, the filter Hl(f) and the integrator
in Figure 23-9 may reduce the adverse effect of this
realization,

The final realization to be discussed is the
method of Carter and Knapp (1976a). In this method

we re-examine our derivation in section 3A, In

This idea was brought to the author's attentiou
by J. P. lanniell® of the Naval Underwater Systems
Center, New London, Connecticut.
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particular, the spectral density matrix (3-6), for
models like (3-1) which give rise to spectral densities
given by (3-14), can be expressed (suppressing the f

dependence) as
= * ! -
Qx Qn+GssV Vi ), (3-39)
where the steering vector

1

v' = [1,ae”3271D) (3-40)

and, for uncorrelated noises,

Q = (3-41)

and (for any given f) GSS is a scalar. The complete
award function to be maximized (3-15) requires knowledge
of Qx-l. The inverse of (3-39) is given by Knapp (1966)

as

-1 %'~ -1
1 G @ VVQ, . (3-42)
QX - Qn - ' -1 *
1+6 v'q v
SS n

For uncorrelated noises Q = does not depend on D;
n

therefore, the total award is maximized by maximizing

J. = - % f X*E*E'X af, (3-43)

- 00

where the 1x2 vector filter

-~ ~ 1
o=, 0] = = 5 (3-44)

o T b 2 s b et

kSt gl oy v AN

b
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—a

By Parscval's Theorem, (3-13) can be iinplemented
1 by filtering xl(t) with filter ﬁl(f) and filtering
x2(t) with filter ﬁz(f), then summing, squaring, and
averaging.

If we separate from ﬁz(f) that portion dealing
i with the hypothesized delay we can realize the delay

] estimator as shown in Figure 3-10. Moreover, note that

Gl 0 1
-1 - ngn 1
QO v.G = 171 V(} < (3-45a)
n ¥.== 1 -j2n D S
0 G ae
Nofy
| — 1
| _IW Uss
Gn n
171
_ (3-45b)
-j2nfD
‘ aJGSS e
G n
22 2x1
' L al
{ Further,
i
S ~j2ufL, [ 1 0 1 ]
146, V'Q V" = 1+G _ [1,0e ] .
| 1M
1 n_janD
0 Gn n
I 272 (3-462)
I ]
=1+Gqsll.ae_32"fDl Gl
y nyny (3-46h)
aernfD
er n
i I 2°2

Grh s B A

R P

e
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i ‘ 2
(‘
! Gos  + o “ss

=1 + G (3-46¢)
! 21 f2M2
; Thus, the estimator can be realized as shown in
‘ Figure 3-11. For low SNR, that is, when
i
| G a2G__(f)
| SS <<1 and sS <<1
{ G (f G (f)
* i | nyfy
!
1+6 vQ lviz1 (3-47)
ss n

then the filter following the summation in Figure 3-11
is approximately a unityv-gain zero-phase all-pass
network. Note in Figure 3-11 that the form of the
filters at each sensor depends on the signal and noise
spectrum. In particular the estimation of D presented

here requires filtering in exactly the fashion as the

' detection of a signal arrival presented by Knapp (1966).
These low SNR filter forms are commonly r:ferred to as
Eckart filters after early work done in the detection

area by Eckart (1952).
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CHAPTER 4
COMPARISON NF THE ML ESTIMATOR TO OTHER PROPOSED
SUBOPTIMUM PROCESSORS

The objective of Chapter 4 is to compare the ML
time delay estimator with several other processors
that have been proposed. From Chapter 3, we know that
the ML processor will have the minimum local variation.
Alsc, the previously derived expressions for the local
variation of any correlation processor can be used to
analytically compare other intuitively appealing
correlation processors. Additionally, the effect of
erroneously identifying the signal spectrum will be
investigated, since that will cause the selection of an
erroneous weighting function.

The first section of this chapter presents the
motivation for the use of crosscorrelation processors.
The second section compares several such processors,
and the third section considers the interrelationships
of these various processors.

4A. Motivation for Crosscorrelation Processors

For the model

xl(t) = sl(t)+n1(t) (4-1a)

x2(t) = asl(t+D)+n2(t) (4-1b)

one common method of estimating the time delay D is to

86
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compute the crosscorrelation function
Rx1x2(1)=E[x1(t)x;(t-1)] , (4-2)
where E denotes expectation. The argument t that
maximizes (4-2) provides an estimate of delay. For
models of the form of (4-1), the crosscorrelation of

xl(t) and xz(t) is

('r)=aRs - ('r--D)-e-Rn a (t) . (4-3)

R
Xq o 1"

172
The Fourier transform of (4-3) glves the cross-power
spectrum

-§27£D
G . (f)=aG_ _ (£)e32"Dyg (1) . (4-4)
X1%9 815y nyty

If nl(t) and nz(t) are uncorrelated (Gn f (f)=0), the

172

cross-power spectrum between xl(t) and xz(t) is a scaled
signal power spectrum times a complex exponential. Since
multiplication in one domain corresponds to convolutior
in the transformed domain (see, for example, Oppenheim

and Schafer (1975)), it follows for Gn " (£)=0 that
172

R, . (1) =aR_ _ (1) @s(r-D) . (4-5)
Xta $151

One interpretation of (4-5) 1s that the delta
function bas been spread or 'smeared" by the Fourier
transform of the signal spectrum. If sl(t) is a white

nolse source, then its Fourler transform is a delta

function and no spreading takes place. An important
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property of autocorrelation functions is that

R . (1)<k
8151 Sy

Sl(O). Equality will hold for certain
1 for periodic functions (see, for example, Davenport
(1970), pp. 323-326). However, for most practical
applications, equality does not hold for 1#0, and the
true crosscorrelation (4-5) will peak at D regardless of
whether or not it 1s spread out. The spreading simply
acts to broaden the peak.

In fact, more generally, when xl(t) and xz(t)
have been filtered by Hl and Hz, respectively, then the

cross-power spectrum between the filter outputs is

given on p. 399 Davenport (1970) as

(f) . (4-6)

(f}=H1(f)H§(f)Gx :

g
Y1¥2 Tk

Therefore, the GCC between xl(t) and xz(t) is

o«

£ - S j2rf _
Rxlxz(r) {mwg(f)cxlxz(f}e df , (4-7a)
where
Wg(f)=H1(f)H5(f) (4-7b)

denotes the general frequency weighting. The particular
weighting selected is denoted by a change in the sub-
script g.

For all of the proposed weightings which we will
investigate, W(f)=W*(f) and W(f)=W(-f); that is,W(f) is
real and even. These properties are also held by the

minimum variance ML weighting.
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To distinguish which of the propecsed general

weightings has been applied, we denote

f\._,-g f -8:
Gy1y2( ) lexz( ) (4-8a)
and thus
-j2nfD
G. . (£)=W (D)laG_ _ (D)e 4" 46 ()] . (4-8b)
Y1Yg g &) Sq nyNg

When the noises are incoherent, taking the Fourier

transform of (4-8b) yields

g =
RXIXZ(T )—wa( T) @ aRsl

s (D Os(r-D) (4-9)
1
where wa(r), the inverse Fourier transform of wg(f), is
even. This being the case, the true GCC will also peak
at D regardless of the specific weighting. Thus one
might be puzzled as to why any weighting is needed.
Indeed, the crosscorrelation function alone is a useful
technique for estimating time delay.

Two practical reasons why prefiltering is desirable

are evident. If the noise is coherent, for example, if

j2n £D

(£)=G (f)e™d 2, (4-10)

Gnn

172 B

272

then

g -
RS ¢ (D)=R,_ (1) @ [aR

(1) @ 8(r-D)
X1%2 154

+ aszsz(r)@s(r-nz)} : (4-11)

It is clear, from (4-1i), that the counvelutions by

R (t) and R (1) will produce two peaks which may
S151 SgSg
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be spread into one another. The convolution by wa(r)
can aid to undo this smearing. For a single delay
broadening of the delay peak may not bt a serious

problem. However, when the signal has multiple delays,

the true crossccrrelation is given by

R ('r)=Rs

X1X2

181(1)@§ a 8(t-Dy) . (4-12)

In this case also, the convolution with RS (1) can
171

spread one delta function into another, thereby making

it inmpossible to distinguish peaks or delay times. Under

ideal conditions where Vfﬁx x (f)EGx .
i72

(£), Wg(f) should

172

be chosen to ensure large sharp peaks in Ry v (t) rather
172

than a broad one (see Figure 4-1), since this will ensure

good time delay resolution.

There is a second important reason why prefiltering

~

is desirable., In practice, only an estimate Gx " (£
172

of Gx % (f) can be obtained from finite observations of
172

xl(t) and xz(t). Thus we can never exactly obtain the
crosscorrelation from a limited amount of time data.

Because of the finite observation time, then, Rx - (1)
172

can only be estimated. For example, for real ergodic
processes an estimate of the crosscorrelation is given

on p. 327 of Papoulis (1965), as:

A 1 T
Rxlxz(r)x  — fT xl(t)xz(t-r)dt , (4-13)
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Figure 4-1 Broad and Sharp Estimates of Delay for
Infinite Averaging
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where T represents the observation interval. For limited
duration data records, the accuracy of the delay estimate,
ﬁ, can be improved by prefiltering xl(t) and xz(t)

prior to the integration in (4-13). 1In practice we can
compute (4-13) by weighting the estimated cross spectrum

and computing an inverse Fourier transform to obtain an

estimated GCC as follows:

jorntr

X (f)e daf . (4-14)

SCEI I o ~
R 2(1) {mwg(f)c;x1 -

Xy X

Wg(f) now serves to improve the estimate of Rxlxz(r)
used to estimate time delay.

In practice, depending on the particular form of
Wg(t) and the a priori information, it may also be
necessary to estimate Wg(f). For example, when the role
of the prefilters is to accentuate the signal passed *o
the correlator at those frequencies at which the SNR
is highest, then wg(f) can be expected to be a function
of signal and noise spectra which must either be known
a priorilo; estimated.

Hence, we see that the true crosscorrelation
function, for the model (4-1), is sufficient to
determine the correct time delay; but for practical
(finite data) considerations it is desirable to prefilter
xl(t) and iz(t) prior to crosscorrelation. Indeed, the
problem of selecting Wg(t) to optimize certain performance

criteria is not new and has bYeen studied by several

investigators. (See, for example, Akaike and Yamanouchi
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(1963), Bangs (1971), and Hannan and Thomson (1971).)

Our intuitive discussion of sharply peaked
estimators may suggest certain types of weighting.
However, sharp peaks are more sensitive to errors
introduced by finite observation time, particularly in
cases of low SNR. Thus, as with other spectral
estimation probhlems, the choice of Wg(f) is a compromise
between good resolution and stability. In the subsequent
section we compare several promising weighting functions
proposed previously in the literature.

4B. Comparison of Proposed Processors

The preceding discussion provides background for
the role that Wg(f) is to play. Now the six versions
of the generalized crosscorrelation function listed in
Table 4--1 will be examined individually. In the process
of comparing the processors in Table 4-1, there will be
a tendency to want to look at some simple cases, for
example, equal white noises and strong (or weak) white
noise signals. In this regard, it can be shown for the

case where Gn (f)--Gn B (f)=Gnn(f) is equal to a

1M 209

constant times Gs & (f) (whether or not the signal is

171

white) that five of the processors in Table 4-1 provide
for the identical frequency we:ighting, except for a
constant. (The crosscorrelation processor (W(f)=1,Vf)
is a delta function smeared out by the Fourier transform

of the signal (noise) power spectrum.) 1In these cases,
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Table 4-1. Proposed Processors

JRURUUREP R

Weight
Processcr Name W(f)=Hl(f)H§(f)
. Roth Impulse Response 1/Gx " (f)
11
. Smoothed Coherence
Transform (SCOT) 1/ belxl(f)zexz(f)
. Phase Transform (PHAT) 1/1G (f)l
s )
. Crosscorrelation 1
. Eckart G (£)/16G ()G (f)
$151 [ Ny noly
. Maximum Likelihood
(ML) Cyp(H)
G (f)
xlx2 lﬁ—clz(fﬂ
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the delay estimate from each of these five processors

will have the same variance. Herce, a complete comparison
can only be made when detailed signal and noise character-
istics are provided. Such information is largely
dependent on the particular application ani a detailed
comparison is therefore beyond the intent of this work.
For underwater acoustic applications, characteristics

of the radiated and self noise of ships, submarines, and
torpedoes and the noise background of the sea are given

by Urick (1967). For more fundamental signal and noise
characteristics, it is useful to r »vide a brief example
of using (3-33) and (3-34). Suppose the example

corresponds to (4-1) where a=l; Gss(f)=1, Vfe(-B,B)

otherwise Gss(f)-o; Gnlnl(f)=Gn2n2(f)=1,Vf. It follows

from (2-1) and (2-2) that

2
Gss(f) .(4-15)
CIZ(f) - p
[0,5(1)4G, o (D16 (4G, (1))

Hence,
0.25 , Vf (-B,B)
C,a(f) =
= 0 , otherwise .
Other values are given in Table 4-2.
4B1. Roth Processor
The weighting proposed by Roth (1971)
G = 1
WR\f) cx - T (4-16)
171

where the subscript R is to distinguish the choice of
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Table 4-~2, Comparison Case Data
fe(0,B)| fe(+B,H)
Gslsl(f) 1 0
Gnlnl (£ )-annz(_f) il 1
lexl(f)-zexz(_f) 2 X
Gx1x2(1)| 1 0
Clz(_f) 0.25 0
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W), yields!

A

. 6 (D
(R) X1%o j2ntt
RF) ()= e ar . (4-17)
XX 7 e Gx1x1Zf5

Equation (4-17) estimates the impulse response of the

optimum linear (Wiener-Hopf) filter,

xlxz(f)
lexl(f) '

H (f)= (4-18)

which "best" approximates the mapping of xz(t) to xl(t)

(see, for example, Van Trees (1968), Carter and Knapp

(1975) and the discussion of Theorem 2-3 ), If nl(t)#O,

as is generally the case for (4-1), then
x1xl(f)=Gslsl(1?)4-(}nlnl(f) , (4-19)

and ideally

(f)
(R) = %Gg
(r)-c(r-n)Gf [ 1° (f)ﬁ sz"f’df.(4-20)
1

858 nyny

(f) equals any constant
1

Therefore, except whep G
n,n

(including zero) times Gs = (f), the delta function will
171

again be spread out. The Roth processor has the

desirable effect of suppressing those frequency regions

1pe discussed earlier, W(f) may have to be estimated
for this processor and those which follow, because of a
lack of a priori information. In this cgse (4-16) may
require that G (f) be replaced with G (f).
Ky %7 X1%1
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(f) is large and &x % (f) is therefore

where Gn i
1 172

1

more likely to be in error.

From (3-33),
G
XAX
o —22 (1.c)ras
R 71 Gx1"1 (4-21
var(B)= ) -21)
s [7 1 .2..12
gn’r |1 o, , |g=—t"at
o 172 xlx1

In the example of Table 4-2 this becomes

B H
s, 12 3 arery th1at
= (4-22a)
2
2, |B,21
81 T |ff f
[o Ti]
B3+ $n°-38°
. , (4-22b)
2 278®
9

when B=F (4-22b) agrees with (3-35) as expected; but
if H is large in comparison with B, the variance of the
Roth processor will be large in comparison to the
Cramer-Rao bound (3-24).

4B2. Smoothed Coherence Transform

(f) may be due to frequency bands

Errors in é
X1%2

1X

where Gn (f) is large, as well as bands where

2"2

Gn . (f) is large. One is therefore uncertain whether
171

(4 = v = . ’
to form 'R‘f) l/Gxixl(f) or WR\f) l/zexz(f), hence,
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the smoothed coherence transform (SCOT) proposed by1

E i Carter, Nuttall, and Cable (1973) yields
i
? i W (£) = 1/J» (4-23)
F G (£)G (1)
: X1%1 7 XXy
£ ]
: { This weighting gives the SCOT
-
P ~(8) = j2nfr
R, . (1) =f vy, . (£)ed*" 7qs | (4-24)
E _ X1%2 = X1%p
] where the coherence estimate?
4
P A : lexz(f)
T %, = (4-25)
(1)G (f :
Jlexl Xo¥g
For Hl(fﬁ:l/m and Hz(f)=1/ Gx - 7y the
11 272
SCOT can be interpreted as prewhitening filters followed
! by a crosscorrelation. When Gx % (f)=Gx x (f), the
171 272
SCOT is equivalent to the Roth processor. If nl(t)#o
2 and nz(t)fo, the SCOT exhibits the same spreading as

the Roth processor.

1The SCOT was originally proposed by G.C.Carter,
A.H. Nuttall, and P.G.Cable in 1972 and successfully
applied to actual data by G.C.Carter and P.G.Cable in
i 1972 and Brady (1973) for part of his Ph.D. work.

2A more standard coherence estimate is formed
{ when the autospectra must also be estimated, as is
usually the case. (See Carter, Knapp and Nuttall (1973a),)
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From (3-33)

o0

2
s - /e n-c(e)df
Var(D)= —2 [ ]

-5 (4-26)

o
Note as C(f)»1, the numerator becomes small and the
denominator becomes large. For our example, since

G (f)=Gx X

X1%1 57%p
the Roth processor.

(£) the SCOT has the same variance as

4B3. Phase Transform

To eliminate the spreading evident above, the
phase transform (PHAT) uses the weighting1

il

W (D)= ———
G. . (£)
X1%2 \

(4-27)

which yields

(p) ® "X X
R . (1)= f L2 ed2TTye
xlx2 Gx . (f
-C0 172
For the model (4-1) with uncorrelated noise (that is,

Cayn, ()70).

(4-28)

'lexz(f)l=aGslsl(f) . (4-29)

1The PHAT was originally suggested by G.C.Carter,
A.H. Nuttall and P.G, Cable in 1972.
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Ideally, when Gx - (f)-Gx % (),

1%2 1%2
axlxz(f) j6(£)__3j2nfD

= oJ¢ K, Ll
'G—mfl e e
1%¥2

has unit magnitude and

R(p) (1)=6(t-D)
Xy%g

The PHAT was developed purely as an ad hoc
technique. Notice that, for models of the form of
(4-1) with uncorrelated noises, the PHAT (4-28),

ideally, does not suffer the spreading that other

processors do.

From (3-33),
1
(p). f r = (1-C) df
var(D) = 2—.C
g [f f df]

As C-+1, L———l =0, so the processor will behave well
that is, low variance). However, as expected, as C-0
the variance grows without bound. For the example in

Table 4-2, assuming the weighting is zero for f>H ,

B H
2,3 2 1-C
(p)a J 2942 4+ i fope——=
venipy. o *a * &8 ‘pf ¢

2. | B2 2
gn°r | £%df

(o]

(4-30)

(4-31)

(4-32)

(4-33)

Except when H=B, this processor will suffer a complete

breakdown as C tends to zero. When H=B, we obtain the

same variance as the Roth and SCOT processors for then
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(as indicuated earlier) G (£)=G (f)=G (f) and
1 % noiy SHe

all processors behave equally well, For models of the
form of (4-1), the poor behavior of the PHAT suggests
that W(f) should not be inversely proportional to
signal power. The crosscorrelator is one method of
avoiding the application of weight inverse to signal
characteristics. Two other processors in Table -1
also assign weights or filtering proportionate to SNR:
the Eckart filter (Eckart (1952)) and the ML estimator
or processor of Hannan and Thomson (1973). We now
examine these three processors in depth.
4B4. Crosscorrelation
The variance of the delay estimate from the

crosscorrelation processor is

@

G, .G
XC ~ [ £2 X Xy XnXo(1-C)df

Var(D)= ‘ 5 (4-34)
|
2 || 2 ]
87T [ 711G df
(o] xlx2 J
For the example case in Table 4-2, (4-34) yields
@ H
= f f2-4-§df+f ledf
XC . o 4 B
Var(D) = 5 (4-35a)
2.|.B. 2
87Ty £°-1df
o
BS+ H3 83
3" 3
= = . (4-35b)
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For H=B, (4-35b) agrees with earlier results. Tta
crosscorrelator actually performs better than either
the SCOT or the Roth processor for the particular
example case in Table 4-2, 1In general, one can expect
to find cases for particular spectra where the cross-
correlator performs worse than the SCOT or Roth processors.
4B5. Eckart Filter

The Eckart filter derives its name from work
in this area done by Eckart (1952). Derivations in
Knapp (1966), and Nuttall and Hyde (1969), are outlined
here briefly for completeness. The Eckart filter
maximizes the deflection criterion, namely, the ratio
of the change in mean correlator output due to signal
present to the standard deviation of correlator output
due to noise alone. For long averaging time T, the

deflection has been shown to be

5 2
L
L[{wﬂl(f)ﬂz\f)GSlsz(f)df]

2
H, (1)

where L is a constant proportional to T, and GS 5 (f)
172

(4-36)

2 ’
G (f)Gn 5 (f)daf

iy B PR

SR
/

-0

H, (1)

is the cross-power spectrum between sl(t) and sz(t).

For the model (4-1) G (f)=aG (f)exp(j2nfD).
$152 5151

Application of Schwartz's inequality indicates that

Lt +32n D 4-
Hy (HZ(£)=W (f)e (4-37)
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maximizes df where

aG (1)
Syeg
Wg(f) = G (DG
11 n

T (4-38)

Ny

2
Notice that the weighting (4-38), referred to
as the Eckart filter, possesses some of the qualities
of the SCOT. In particular, it acts to suppress
frequency bands of high noise, as does the SCOT. Also
note that the Eckart filter unlike the PHAT attaches

zero weight to bands where GS = (£)=0. Tn practice,
171

the Eckart filter reauires knowledge or estimation of
the signal and noise spectra. For (4-1), when a=1 this

can be accomplished by letting

W.(f)=|G )| Me. . (£)-1lG () {|-l6 )
E ‘ X1x2 |/‘jx1x1 ‘ X1x2 U{X2Xéf)

)|

(4-39)
The variance of the time delay estimate using Eckart
filtering is
- S
———e ey &
2 T3 50y, x, Ox x (1-0)af
E ;] 7 G G 171 7279
i W) (4-40)
var(D) = —2—— 5 i
8n2T f2 G Gss
X Xy mo——— df
o} 1 2|u G
nlnl n2n2
For the example case in Table -2,
B
E 2,3
e [ f74% df
Var(D) o 'B4 (4-41a)
2

2
2
811 - f da
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=""“"—"]';'—"" Pl-11b)

8,23
=N
) TB

that is, for this example the Eckart filter achieves
the Cramér—Rao lower bound (3-24). In general! this
will not always occur. In the next section we see
that (4-41b) is the variance achieved by the ML
processor. This might be expected since both the
Eckart and ML processors pass nothing in the signal
frequency band (B,H) and both have constant weightiug
over the band (0,B). Actually, the ML estimator is
closely related to the Eckart filter, as will he seen
in section 4C of this chaptcr,
4B6. Maximum Likelihood Processor

As shown in Chapter 3 the ML processor always
has minimum variance. For the Table 4-2 example, the
correct weighting from (3-20) is W(f)=1/3 for fe(-B.B)
and zero otherwise. New from (3-34)

_ -1
var'(D) =[g Tn283J . (1-42)

Thus, the minimum variance depends on a time bandwidth
product, TB multiplied by the bandwidth sguared, 82.
Suppose zn error had been made identifying the frequency
band of the signal. Then if we presumed that the

weighting was W(f)=1/3 for, say, fe(-aB,aB), in licu o1

f (-B,B), we would cbtain from (3-33)
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when azl

-1
- 3
Var(D) = SZ%E_)[% TnzBS] ; (4-43)

which reduces to (4-42) when a=1. For example, in this
case, a 10 percent error (that is, a=1,1) leads Lo more
than an 11 percent increase in variance. If a<l then

(3-33) becomes
-1

Var(D) = -15 [% Tnzes] , (4-44)
8

which agrees with (4-42) when a=1. Thus a 10 percent
error (a=0.9) leads to an increase in variances of

37 percent. Thus our example suggests it may be more
desirable to let in extra noise than to omit slgnal
power. Finally, if our error led to processing the band

fe(aB,B) and fe(-B,-aB), we would obtain

A -1
Var(D) = —> [ﬁ TnzBs] , (4-45)

1-a3 9

which agrees with (4-42) when a=0.

The ratio of variances (4-45) to (4-42) for

a<<l is

1
1-a

£ d4a° (4-46)

If we again err by 10 percent (i.e., a=(.1), then (4-46)
yields 1.001 or little change in the variance. (This
error is at lower frequencies in the signal band and
as (3-33) suggests, proper weighting is most critical

at higher frequencies.) Thus, for this example,
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depending on how we make a 10 percent error in frequency
band selection, we can have anywhere from 0.1 percent

Lo a 37.0 percent increase in variance of the time

delay estimate.

4C. Interpretation of Relationship Between
Correlation Processors

For the case where o=1

2
G (f)
W (f)=—t , . %1%
ML G, o (D (G, o (D)+G ()
171 1°1 171
(4-472)
i ,
G, o (D6 (D]-cZ _ (nl
$151 Nyfy 1°1
Gs]si(f)
Gn n (f)Gn n (1)
- 171 272 (4-47b)
G () G (£)
548 S4S
1+ — 1§ sl + 171
G (f) G (f)
PR "M
which agrees with equation (28) of MacDonald and
Schultheiss (1969) if in (4-47b) Gn " (f)=Gn - (f).1
3 272
For low SNR,
Gs s (1) Gs [ (£3
11 <<1 and 11 <<1
G €3 S ¢] €3) !
n.n n,n
171 22
it follows that
Gslsl(f)
= = f) ; 4-48
Lk | 22

1Notice tpat agreement requires a=1.
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that is, for a=1 and low SNR, tue ML processor is

identical to the Eckart filter.
SNR,

Similarly, for low

W (f) =

1 . (4-49)
/(G“1“1(f)G“2“2(f)

Therefore, if a=1,

G (f)
- 595
WML(f) = W () . (4-50a)
Jcn n (f)cn n (f) °
171 272
Furthermore, for G (£)=G (f)=G__(£),
n,n, nyn, nn
| _ sysn Psysy ")
Vt’ML(f) = G—nn(—fT- Ws(f) = —G—nnv\?-y— wp(f). (4-50b)

Thus, under low SNR approximations with a=1, both the
Eckart and ML prefilters can be interpreted either as
SCOT prewhitening filters with additional SNR weighting

or PHAT prewhitening filters with additional SNR squared
weighting.

We can rewrite (4-47) as
1

v %0 Can.
nsn, n,N
Wy (£)= 11 22 _ (4-51)
[G_ G J@ G G
¥ 1M1 22 ¥ M1 P22 § M1y P22
¢

G
8980 240,

Dafy

for unj “ormly high SNR,
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J G11m . Wy (1) . = 1+G ; (4-52)
i N fafg MM
e
5151

that is, givirng the weighting characteristics similar
to the SCOT at low SNR. Note that, like the ML processor,

the PHAT computes a type of transformation on

'mlz exp jo(f) . (4-53)

However, the ML processor, like the SCOT, weights the
phase according to the strength of the coherence. From
p. 379 of Jenkins and Watts (1968), comparing (B-22)
with equation (9.2.19) and (9.2.20) of Jenkins and Watts

(1968) the variance of the phase estimates is given by

Var $(f)= —légl.zéﬁ) , (4-54)

where N is the number of independent FFTs used to
estimate phase. Notice as C+1, Var $ +0. Thus,

- % I ej¢(f) . 1 j2nfq

m-(—f)e daf . (4-55)

Comparison of (4-55) with (4-53) reveals that the ML
estimator is the PHAT inversely weighted according to
the variability of the phase estimates.

The ML processor has been compared with five
other candidate processors to demonstrate the inter-
relation of all six estimation techniques. The

derivation ot the ML delay estimator (in Chapter 3),
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together with its relation to various ad hoc techniques
i of intuitive appeal (in this chapter), suggests the

| practical significance of ML processing for estimation

of time delay and, thence, bearing. The remainder of
this thesis deals with extensions of the ML processor

5 to more complex models and a discussion of the results

RSl i JS k. et S
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and suggestions for future work.
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CHAPTER 5

MORE COMPLEX MODELS

Chapter 3 answered, for a simple model, the
fundamental question of this thesis: What is the
"best" method of estimating time delay" Chapter 4
compared this method with several other candidate
processors. Chapter 5 considers three conceptually
straightforward extensions of the problem considered
in Chapter 3: (1) multiple source models, (2) moving
source models, and (3) multiple sersor models. The
"solution" to these problems is more difficult than
the problem of estimating a single time delay for a
stationary source. For example, in the multiple source
and multiple sensor models, there is more than one
delay to be estimated. Indeed, if we treated multiple
sources and multiple sensors together. we would need to
estimate a parameter vector for each source, corres-
ponding to the (relative) delays between that source
and each sensor; thus, a (nonsquare) matrix of delays
(comprised of a parameter vector for each source)
would need to be estimated. Finally, it is necessary,
in effect, to estimate the motion of each source so as
to be able to Doppler correct the received signals

prior to crosscorrelation. Failure to apply some sort

111
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of Doppler correction will cause the received signals
to be essentially uncorrelated even if a common (but
frequency shifted) signal is present.

Both notationally and analytically, the methods
applied to estimate the unknown parameters become more
complex than the methods in Chapter 3. Yet even in
Chapter 3 where a "solution" for the ML estimate of
time delay was possible, we noted that, in practice,
it would be necessary to resort to an AML estimation
technique; for more complex models there is no reason
to expect that the solution will become simpler; indeed,
in this chapter (especially with regard to moving
sources), we appeal more to anproximate and ad hoc
techniques based on the ideas of Chapter 3 than to
rigorous methodologies. The reasons for this approach
are apparent in section B and have to do with the
nonstationarities introduced by the source motion.

5A. Multiple Source Models

The simplest multiple source model is a two
source case where receiving sensors are physically
steered at one source and the second source acts as an
interference. Such a model is depicted in Figure 5-1

(Carter and Knapp (1975)). Mathematically,

xl(t)

and

xz(t) = sl(t)+s2(t—D)+n2(t) . (5-1b)

|

sl(t)+sz(t)+n1(t) (5-1a)
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(The effect of an interfering source on detection is
considered by Schultheiss (1968).) The problem is to
estimate the parameter D. In effect Sl(t) accounts for
correlated noise insofar as estimation of D is concerned.
When sl(t) and sz(t) are stationary uncorrelated

(f) and G (f) and
151 SgSg

when nl(t) and nz(t) are stationary uncorrelated noises

signals with power spectra GS

with the same power spectrum Gnn(f), it has been shown

by Carter and Knapp (1975) that
Gg f G (£)
v ()=t 595 ") ,-j2ntD 151 :
X, X G () ‘G (£)+G (£)+G__(f)
172 $184 S18¢ 8282 nn
’ (5-2)
Sz(f)

In the special case when Gnn(f)=0 and Gslsl(f)=Gsz

v L (f)= 114e732mEDy_=3"D0ogntD (5-3)
X x2 2

1

and

C (f)=00“2ﬂfD = %(1+cos2nfD). (5-4)

X1%2 )
Because of the sinusoidal oscillation between 0 and 1
of Cxlxz(f), the Fourier transform of (7-3) will exhibit
a peak at the value of time delay. This suggests the
usefulness of computing the Fourier transform of the

coherence or SCOT (Carter, Nuttall and Cable (1973)).

A more general, multiple source, two sensor model is

xl(t) = i si(t)+n1(t) (5-5a)

3 aisi(t+Di)+n2(t) : (5-5Y%)

x,(t)
g i
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The 1imit on the sum depends on the number of sources.
Since each source will be presumed to be independent of
the others, the sources will be mutually uncorrelated.
For the general two source case depicted as & multidnput,

multioutput system in Figure 5-2, it follows that

xl(t) = sl(t)+sz(t)+n1(t) (5-6a)
Xo(t) = a8, (£4D) )+ays, (£4D,)+n,(t) (5-6b)
and therefore
lexl(f) = Gslsl(f)+Gszsz(f)+Gn1n1(f) (5-7a)
Gy, (1) = alstlsl(f)+a22G8282(f)+Gn2n2(f) (5-7b)
and
6 %, (1) = alcslsl(f)e‘Jz"fDl e
+ azcszsz(f)e'Jz"fnz
* Gnlnz(f)

However, we can accommodate coherent noise through the

inclusion of addit.onal sources so that without ioss of

generality Gn n (£)=06 for all frequencies. From the

152

two-source model with incoherent noise, we generalize that

G (£) =G (f)+IG (f) (5-8a)

Xy Xa nyy i 84S
2

G (f) =G (£)+Ia, G () (5-8b)

x2x2 n2n2 i i sisi
and

Gx N (f) = Z“iGs E (f)e-janDi . (5-8¢)

172 i i~i

H'If‘
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In the ML estimation procedure earlier the determinant
of Qx could be ignored since it did not deperd on D.
Now, however, for the two-source model, we sez
(suppressing £) that

-j2nfD -j2rfD
G, . +G.  +G , a6 _e %MDy 6 e 2
$184 szs2 nyn, 1 8154 2 S9Sg

E

’ 5-9a)
+j2n2D +327£D (
2GS e 2, G

1+0 8
252 XoXg

a,G e
1 sls1

does depend on (D1D2). For example, even when
G =G =G _, a,=a,.=1 and G =G =G
40y "nyn, NN 1 72 S48y SgSo ss’

nn)2_Gssz(e-32nfD1+e-32nfD2)(e+32nfD1+e+32nfD2)

|Q =(ZGSS+G

(5-9b)

= 2 2 2 -j2nf(D,-D ) _+j2nf(D,-D, ).
4Gss +ZGsann+Gnn -Gss [2+e 2 "17+e 271

L

(5-9c)
In general, |Q| depends on the parameter vector

(DyP,). Thus, we must be concerned by the |Q| as well

c o e Covoand

as the exponent in (3-9), for the multiple source model.

T

Specifically, we want to maximize the sum of both (3-17)

g ¢ and the IogleI term. The latter is given by
; N N
* h=1:I log |Q] (5-10)
§ k=-N € )
E
E but
Gx1"1 Gx1"2
| |Q|= =G, , G ,f1Cc 1. (5-11)
i G * a 1251 %259 1%2
xlxz szz
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Thus,
log !QI'* = —%Dng G, , G, *log, (1-C_  )I. (5-12)
€ A e ) ' X183
But log G G does not depend on (Dl’DZ"") so that

X1 %9 XX
the critical parameters in the |Q| term are approximately

given by

1 ’f')
ET imloge[l—Cxlxz(f)]df. (5-13)

In practice, Xy and X, will have finite bandwidth;
therefore the limits of the integral (5-13) will also be
finite. It is noteworthy that the second term is related
to the definition by Shannon (1949) for the amount of
information about xz(t) contained in xl(t). More
specifically, Gelfand and Yaglom (1959) and Nettheim (1966)
have shown that the amount of informatior about x contained

. . . . 1
in v (or vice versa) is given hy

o .1
Ixy- -3 floge[l—ny(f)] ar, (5-14)

where the limits of integration are over the nonzero
range of the integrand. Hence, for ny(f)=0, there

2
is no information (in the linear sense) contained in one

lThpse results can be combined with (2-79) for
models like Figure 2-5 to show that Iy, is the integral
of the logarithm of 1 plus received signal to noise ratio.

2See Carter and Knapp (1975) or Chapter 2 for a
scussion of nonlinear relations which can yield
y(f) 0 and yet y(t} can be entirely due to x(t). as for
ample, when y(t)=x“(t).

di
C
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time series with regard to the other. Alternatively, if
ny(f)=1, for some particular fp, then there is an
infinite amount of information about x(t) knowing y(t)
at the particular freouency fp. More generally, for
nonzero ny(f)<1, the amount of information depends on
the bandwidth (limits of integration ir (5-14)) and the
MSC in that band.

Thus, following (3-15) and (5-10) through (5-14),
we see that it is desired to maximize

Sep |1 +2fm Gx1"26"1;2 at| . (5-15)

X.Xp .G, G (i1-C_ )
172 - X1Xq XoX, X1Xq

For the fwo source model,

© & 0. G e+32nfD1
X %y 17848, af +
=Tt s2s
AT
® ax X GZGS S e+J2ﬂfD2
oy _1%2 2 S35 af (5-16)
-0 IQI

or for two-sensor, multiple source model we maximize

® G. _ (£)La,G_ _ (f)etd2niDi
x1x2 i 1 Sisi
Jer |t +2f dr
172 -o Q£ ]

(5-17)

Thus, the important regions ot the estimated nross

spectrum for determining Di are thcse frequencyv bands

where GS 5 (f) is large. However, even when the signal
i~i

spectrum is strong, if the intersource interference is

such that the intersensor coherence Cx S (f) is low, the
172




e

_—

o AT

120

weight attached to the estimated cross spectrum is
degraded, as shown above.

While we can estimate auto spectra and coherence
between sensors, more sophisticated methods must be
applied in order to astimate the source signal spectrum.
The mathematics shows how to process for known signal
spectrum. In the communications problem, signal spectrum
will generally be known, although a, which more generally
could be a function of frequency, will probably not be
known. 1In other problems, methods involving classification
and data bank retrieval need to be studied. In the
absence of a priori knowledge, we might assume that
every frequency band where the coherence was high was
a different source. Tracking (that is, estimating
bearing continuously) for each frequency band then
becomes a classification problem where the number of
sources 1s ascertained by noting the number of clustered
sources. The fewer the sources for a given total source
power the easier tracking will be. However, repeated
clustering analysis will be desirable to ascertain
whether two or more sources are being classifled as one,

In '"real world" problems, there may well be more
than one source,; hence, the application of Chapter 3
results must include the concepts of multiple sources.
There are other cencerns, too, in the practical
application of our Chapter 3 results. The next

generalization which we will discuss is the moving source
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problen.

5B. Moving Source Models

The model we shall consider is a simplified
one characterized by the observed waveforms (Carter
and Knapp (1976b))

xl(t)=s(t)+n1(t) (3-18a)
y2(t)=as(8t+D)+n2(t), (5-18b)

where s(t), nl(t) and nz(t) are zero wmean jointly
stationary Gaussian random processes which are mutually
uncorrelated. The problem addressed here is ML
estimation of the time compression and delay parameters
B and D, respectively; the problem is related to the
Doppler shift work by Van Trees (1971). The character-
istics of the signai and noise are such that xl(t) is a
member function of a zero mean stationary Gaussian
random process. Further, despite the attenuation, delay
and time compression, yz(t) is also stationary and
Gaussian. That is, both autocorrelation functions given
by

Rxlxl(t) = Rnlnl(r)+Rss(r) (5-19a)

and

R (tl,tz)cﬂn

Yo¥g n (t2-t1)+aRss(B(t2—tl)) (5-19b)

272
depend only on the time difference ty-ty.
However, the crosscorrelation for model (5-18)

depends on 8 as follows:
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Rxlyz(tl.t2)=aE[s(t1)s(8t2+D)]=aRSS(t1-8t2-D) (5-19¢)

Ryle(tl,t2)=aE(s(8t1+D)s(t2)]=aRSS(8t1+D—1Z) . (5-19d)
As required,

R (tl't2) =R

(ta,t;) . (5-20)
x1y2 x 2’1

Y2*1
Notice the crosscorrelation depends on B as well at tl
and t2, and not simply the difference between t1 and tz.
Hence the processes xl(t) and yz(t) are not jointly
second order stationary, but depend on the absolute time
origin. Thus, the introduction of time compression f in
our model therety complicates the theory through the
imposition of a second order nonstationarity. [For a
variety of practical reasons, we desire to operate on
y2(t) in order to ensure complete staticnarity.)

An ad hoc technique for estimating D is to
operate on y2(t) to remove (or adjust) the tiwe scale
change 6. The result, referred to as xz(t), may then
be used with xl(t) in the usual ML estimator of Chapter
3. This indeed turns out to be the ML estimator for this
problem {as is subsequently shown). A major problem,
of cours=, is that 8 as we’l as delay D nust be estimated
to undo the time scaling introduced by motion of the
source. Suppose Ba’ for example, is one estimate (or
hypothesis) of B (like T was a hypothesized delay in
Chapter 3) and let

Xy(t) & yy(t/8,) (5-21a)
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= as(Bt/Ba+D)+n2(t/Ba) . (H-21b)

Now the crosscorrelation of xl(t) with xz(t} is given by

Rxlxz(tl,tz) = Elx,(ty)x,(t,)] (5-22a)
= 4R__(t -2t -D) (5-22b)
ss" 1 Ba 2 ) =

Thus, for 8a=8' we see that xl(t) and xz(t) are second

order jointly stationary, for then R (t,,t,) depends
X1%g 1’2

oi 'y on the time difference T=t1—t2. For 81=8, it is

possible to compute a single Fourier transformation on

T to aciieve

[o]

(F )=0" R = (T
—o *1%2

~j2rft .
Gx = e dr (5-23a)

172

- -j2nfD 5
aGss(f)e . (5-23b)

Similar results can be obtained using the cuncept of
locally stationary random processes (Silverman (1957)).
However, in general, when B#Ba, a two-dimensional

Fourier transformation must be performed. For convenience
let é=8/8a (where we ultimately hope to make 31 by

proper choice of Baﬁ; then it follows that

r BT N :
E[fl(k)x;(l) = ;ﬁf dt f dt R (t;-Bt,-D) . (5-24a)

(o] (o]
e-Jmo(ktl—ltz)

1In the following it may be assumed that B _=1
that is, that v,(t) has not been preprocCessed.

and 8=

Results can then be appli&d with g=1 (rather than 231);
for many problems B=1.
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Equation (5-24) offers a more rigorous interpretation of
) (5-23). For large T aad é near unity, it follows from
| (5-24f) (since the discrepancy between the sinc functions

is minor) that

*
lexz(f) = T E[X4(k)X,(1)] (5-25a)
} _ (oG g (kuy)e K0P 1okg
! 0 , 1#kB . (5-25b)
Also,
*®
T E[X,(k)X,(1)]= \G (kw,)+G__(kw,),1=k
1 1 nyny A sS A (5-25¢)
0 ,1#k
and
T E(X,(K)Xo(1)]=(8.G_ _ (B ku,)+3G (ﬂ) 1=k
: 2 2(1)]=|By nyn, " Ca “a77F ss g 00T
. (5-254d)
0 , 1#k

Note in (5-25d) G
] Naly

Similarly, it can be shown for éél and large T, that

is evaluated av BakwA not kmA.

g EiX,(k)X}(1)] = aess(kmA)eJk“AD 1=k/B

- (5-26)
0 1#k/8 .

We now proceed as in Chapter 3, Section A. 1In particular,

we desire to maximize a total award function JA’ as

depicted in Figure 5-3, through the adjustment of

N T T

hypothesized compression Ba and hypothesized delay t;
when JA is maximized, the ML estimates 8 and D depicted

! ' in Figure 5-3 are achieved.

e

It 1s important to the discussion that follows to

note that if Ba is incorrectly selected such that é is
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SN

: much different from unity, the processes xl(t) and xz(t)
are second order jointly nonstationary and the estimators
are not ML estimators. However, once we have begun to

; estimate delay and compression correctly, the processor

is an ML estimator; that is, in the sequential estimation

problem where several observation intervals are available,

e - —

then ML or at least AML estimation is possible in the last
intervals. Before proceeding, we also note that if
é#l any crosscorrelation (coherence) terms in the award
JA will be zero. More specifically, if B is much
i different from unity, then time delay cannot be estimated
i without some type of Doppler or time compression
preprocessing. The importance of this statement is that
Chapter 3 cannot be applied to estimate bearing to moving
4 sources which are nearfield (relative to the sensor

separation) unless time compression preprocessing is done.

Denote the Fourier coefficients of xl(t) and x2(t) as in

o e i

Chapter 3. The 2N+1 vectors X(K)Z[X (k) X,(Bk)]" k= -N,
-N+1,...,N for 551, are uncorrelated Gaussian (hence,
independent) random variables. More explicitly, because
of the independence, the pdf for
X=X () X 5 (-NB)}, {X) (-N+1) X [(-N+D)BI} ... 1% (),
Xy (NB)} -
given the true values of attenuation a, delay D and time
compression B (actually we also are given Ba) hence are

"given" é=B/Ba ) is the product of the individual

densities,
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Specifically when Ba=1 and R=1 the pdf of X is
N

p(X[a,8,D) = 1 [h exp(- %Jk)l (5-27a)
k=-N
where
3, = T[x;(k)x;(k)]Qx_l (ku,) | %, (k) (5-27b)
xz(k)
and -1
h, =[(2ﬂ)|Qx(kwA)|§], (5-27¢)

and Qx(f) is the power spectral density matrix between
the random procesises xl(t) and xz(t).

For ML estimation, it is desired to simultaneously
choose as D and B those values which maximize the pdf
evaluated for hypothesized compression Ba and hypothesized
delay t. Equivalently, é and ﬁ are selected to maximize
any monotonically increasing transformation of the pdf.
Hence, § snd D are selected to maximize the log pdf,

namely,
N N
J, = 1n p(X|a,8,D) Llnh- 2 T4 (5-28)
A Zla,8, k™ 2 K :
k=-N k=-N

While the derivation provides sufficient information on
estimating the parameters B and D, it is valuable to
interpret (5-28) in order to understand both its meaning
and its implementation. The award to be maximized (5-28)

can be written (assuming large T) as three terms

substituting (5-14) and (3-15) °
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% A

i = | & x G ”Gx1x2 Cia  +jont
= e s % 1M1, T2¥2 | 1 df+/f G| e  J4TET
E . A Tx.x G, . G -C ~o|“x,x,1[1-C, ]

g: { 172 -o X% XoX, E lé] 172 12

; df . (5-29)
s Unlike Chapter 3, 012 depends on B. Equation 75-29)

13 (9
£ is difficult to interpret; it is comprised of three terms.

For ML estimation (versus AML estimation), only the last

b two terms of (5-29) depend on the data. However, the
parameters B and D appear in all three terms of (5-29),
hence, all three terms must be considered. The first
term of (5-29) is small with respect to the second term
(because, from (5-14), the information has a logarithm

in it); also, the first term of (5-29) is small with

respect to the third term. Hence, we might expect that
the first term can be ignored. However, under some
common degenerate cases (specifically, t=D and T very
large) the sum of the second and third terms does not

depend on the parameters B and D. For example, for =D and

A -j2ntD
| very large T, 8 =G , i=1,2and G =|G le
| X1 X% X)X XXy

ard the sum of the last two terms of (5-29) becomes

© 1=-C
'{w_T:Edf' which is a constant. This situation is

perplexing since the remaining term in (5-29) (namely,
the information (5-14)) does not depend on the data, but
only on the (assumed known) statistics of the data. It
is interesting that when this is the case and when we
apply AML techniques (that is, we use estimated data

statistics for assumed known statistics), the data do
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appear i1 th«< expression for the information.
‘ Finally, we notice if as a suboptimum technique,
; we were to take the first or last term in (5-29) and
simply maxiuize it, that to do so would require adjusting

\ the parameter estimates so as to attempt to increase the

coherence across the entire frequency band; the second
term of (5-29) does just the opposite. Notice when the
| - time compression is estimated incorrectly, C12
‘ only the information 112 (or f12) is needed to estimate

=0 and

compression. Having estimated compression correctly,
only the last term of (5-29) is needed to estimate delay.
‘ This suggests a suboptimum ad hoc technique for estimating
! B8 and D, namely, maximize the information to estimate

A

B then use that B to estimate D with the award function

of Chapter 3. 1In practice, this subcptimum technique
4 should compare favorably with maximizing (5-29), since
there are a number of assumptions and approximations

leading to the award function (5-29); most notably,

e At il N

(5-29) presumes 551 so that joint second order stationarity
holds. When this is not the case, maximizing (5-29)
becomes simply an advisable but ad hoc estimation
procedure.

There are some degenerate cases of the model
(5-18) that are easier to work with analytically (namely,
D known and equal to zero, nz(t)=0 and a=1), Such models
have rather predictable results (namely, the cross-

{ correlation terms are important except as Gn n (f)se,
171
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that is, as one of the observation channels becomes
noise dominated; in the later case, the hypothesized
time compression attempts to align the estimated auto
spectrum with the (known) signal spectrum), Thus, the
degenerate cases do not add insight into the fundamental
issue of stationarity. We are thus led to state that
maximizing (5-28) (or first (5-14) and then the last
term of (5-29)) by choice of B and D (respectively) is
merely an intuitively appealing ad hoc technique.

5C. Multiple Sensor Models

The problem we address here is estimation of a
parameter vector D from a set of sensors with received
voltages

xi(t) = ais(t+Di)+ni(t) s £ Y. [ (5-30)

Although the notation for Di is the same as Section A,
this model should not be confused with a multiple
source model, since this model is only one source but
many sensors. To extend the problem to many moving

sources received at many sensors requires that

xi(t) = {i ai,kS[?i,kt+Di,k]}+ni(t) ' (5-31)

In the model (5-30), we assume (without loss of

generality) that a1-1 and D1=O; thus
xl(t) = s(t)+n1(t) (5-32)
xz(?} = a,S(t+D,)+n,(t)

xM(é) - aMs(£+DM)+nM(t)
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and we desire to estimate the M-1 dimension relative

delay vector (D2-D1, D3-D1,...,DM—D1).

The general solution to this problem is simply

an extension of the alternate realization ir Chapter 3,

Section 3C. In particular, the steering vector is now

= s %f-jZﬂsz"_'%f-JZHfDM]

For uncorrelated noises

Q_ = diag("G ]
n niny.

The 1xM vector filter is given by

-1
T I = o 1h= Qn “J Gss
s M

3
7, =1 %
[1+GSSV Qn LA

Hence, the generalization is realized by extending
Figure 3-10 to M prefilters with one at each sensor

location as shown in Figure 5-4. A more explicit

(5-33)

(5-3%)

(5-35)

realization is given in Figure 5-5, which is the extension

of Figure 3-11.
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CHAPTER 6

DISCUSSION

6A. Applications and Summary

The purpose of this section is to briefly
summarize and discuss the applications of this work.
Most of the applications are intimately tied to the
theoretical results already presented which are summarized
in the subsequent paragraphs. The primary purpose of this
section 1s to highlight applications of the theory with
a minimum of reliaiice on mathematical notation. There
are three main applications for the theory of time delay
estimation discussed in the following three subsections.
First, it is a useful vehicle for parameter identification.
Second, we can use it to obtain bearing estimates.
Finally, under certain conditions we can estimate source
position. These applications rely on the theory
developed in the preceding text,which is summarized in
the following two paragraphs.

This dissertation has investigated methodologies
for passive estimation of the cearing to a slowly
moving acoustically radiating source. As demonstrated,
the mathematics for the solution to this problem is
analogous to estimating the time delay between two

time series. Because the estimation of time delay is
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closely reiated to the colrerence between wwo time
series an extensive lnvestigation of coherence has been
presented. New results on using cohererce to provide
information about linear and nonlinear systems have
been presented and proved.

The ML estimate of time delay (under jointly
stationary Gaussian assumptions) has been derived.
The expiicit dependence of the time deluy estimate o
coherence is evident in the estimator realization ir
which the twoc time series are prefiltered (toc accentezte
frequency bands according to the strength of the
coherence) and subsequently crosscorrelated. The
hypothesized delay at which the GCC function peaks is *ho
time delay estimate. From the GCC realization the
variance of the time delay eostimate has been obttained.
By use of a different interpretation of the MI, estima or
derivation, other realizations have been cobtained. 71h=
GCC realization with ML weighting is compared to severat
other proposed weightings. The estimaticn formulaticn
has been extended to three important generalizations:
multiple sources, moving source and multiple sensors.
Nonstationarities introduced as a result of source motion
are studied. These results can now be applied to three
problem areasof interest.

6A1. Parameter Identification
In the system identification problem we are given

a system with unknown cescription. We design a probe
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to excite the system and ensure that the probe is
sufficiently rich in frequency content (Gxx(f)>0,
fe(-B,B)). Then we simultaneously observe (perhaps
recoyr: ) the probe (input) and response (output) of
the system. The objective nf these observatioans is
to characterize the system. 1In Chapter 2 it has been
shown that there exists a linear filter which will
characterize the system if the MSC is unity at all
frequencies. (Appendix C provides a computer program
for estimating MSC between two waveforms (input and
output).) When the MSC is not unity, the characteriza-
tion is considerably more complex. We have looked at
certain no memory nonlinearities and shown how they can
be characterized by orthogonal polynomial expansions.
The main thrust of the dissertation, however,
has been to estimate one parameter (delay) when the
system is linear, but the observations are corrupted
by noise. Prcper estimation of just this one parameter
requires knowledge of the magnitude transfer function
o (or mrre generally |4(f)|), a2nd finally knowledge
of the noise spectral densities, When this a priori
knowledge is not available. we have proposed estimating
the unknown quantities and substituting them in place
of the known quantities, There is no rigorous
derivation to support this procedure other than to note

that as the observation time becomes large the estimated

quantities converge to the true ones. Thus, the
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methodologies appiied to the time delay estimations can
be expected to he even more complex if, for example,
the filter output were x2(t)=018(t+D1)+aZS(t+D2)+n2(t).
More generally, if xz(t) was the output of an FIR
digital filter of unknown order then the problem of
estimating the order, the delays and the attenuations
(see Ilannan and Thomson (1971), Hannan and Robinson
(1973) and Carter and Knapp (1976a)) is a more general
problem than the one addressed here. However, to solve
the bearing estimation problem motivating this research,
the added generality is not required. Thus, the problem
considered here is only a subset of the parameter
identification problem, Further, note that the solution
to the time delay estimation problem does not involve
the Fourier transform of the optimum Wiener-Hopf filter
(Roth processor), which maps xl(t) closest to xz(t);
that is, the technique does not look at *h< peaks or
midpoint of the impulse response of the filter that
in the MMSE sense filters xl(t) to obtain an optimum
xg(t). With these comments in mind, we have generalized
our model to an important class of nonstationarities
in order to estimate bearing.
6A2. Bearing Estimation

The bearing estimate follows directly from the

delay estimate according to the simple arccos trans-

formation '(3-2). The range does not need to be too

great relative to the sensor separation in order for the
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angle that the hyperbola asymptote makes with the

baseline to accurately represent the source bearing,

For stationary sources or closely spaced sensors, the
relative Doppler (or more generally, the time
compression) can be ignored. However, to apply

these technicues to widely separated sensors and

moving sources, it is necessary to process the data

in order to perform Doppler correction (that is, a

time scale correction or time scale expansion). To
ignore this processing would result in an apparent
uncorrelated behavior between the two received waveforms,
One contribution of this work has been to specify an

ML estimate of time compression. However, because of
the nonstationarity of the processes involved, the
results tend to be more heuristic and more difficult

to interpret (and implement) than those for the time
delay estimatior problem. In fact, the implementaticn

is hindered by practical computational issues of achieving
the time compression. Nevertheless, in the future as
computational methods allow for broadband time
compression, the methods hypothesized here could actually
be tested in practical environments. This should not
be interpreted to mean that time compression cannot
currently be accomplished. Exact time compression can
be achieved, as for example, with variable speed tape

recorders or with exact DFT's. Approximate time

compression can also be achieved through complex inter-
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; polation of FFT points or nearest FFT bin approaches.
) : In practice, all of these techniques are expensive

to implement; hence, any production application of the
theory will benefit from advances in methodologies

and mechanizations for achieving time compression.

Having techniques for estimating the bearing to movirg

gttt

acoustic sources, we can extend the applications of our
theory to estimating range.
. O6A3. Passive Ranging

In the two sensor models, we are able to estimate
delay from which we can estimate bearing. In the
I multiple sensor situation more information is available.
! Indeed, with three sensors we can also estimate source
location. For example, in Figure 6-1 three equispaced
collinear sensors are depicted. As indicated in

section 5C, the estimate of © 02 requires simultaneously

SN e

1 ’
processing data from all three sensors (one suboptimum

processor would be to estimate each bearing from

generalized crosscorrelations between only two sensors).
When the sensor-pair midpoints are separated by distance
d (meters), the range (meters) to the source is given by

dsino®

~ 2
= 5In(6,-0,) (6-1)

An estimated range is obtained by inserting estimated
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bearings in (6-1).1 The asymptotes depicted in
Figure 6-1 are upper bcunds (biased estimates of
hyperbolic LOP's); hence, the actual source location
will be slightly "below" the intersection depicted.
For R>>d, the bias will not be a practical concern.

For more complicated sensor geometries (see
Figure 6-2), the bearings 01 and 02 are used to obtain
effective bearings Ole and Oze. When the sensor
geometry 1is known, -the effective bearings are easily
obtained by the addition of a correction term to the
observed bearing. Similarly, the effective separation
de is simply the shortest distance between the midpoints
of the sensor pairs (1,2) and (2,3). The range estimate
is then obtained by substituting effective measurements
into (6-1). When four or more sensors are used to
estimate three or more LOP's, source position may be
ambiguously specified, as shown bty points A, B, C in
Figure 6-3. 1In such a cese, it is reasonable to presume
that the source is the least squares distance from

existing LOP's; although it is possible for two or

three sources to be present.

1The estimated position (range and bearing, in
polar coordinates) obtained by substituting ML
estimates of the bearings into (6-1) is not necessarily
the ML estimate of position.
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6B. Suggestions for Future Work

This section suggests four areas for future
work. In a sense, it provides an insight into what
we still do not know about the problem at hand. Or
stated differently, having solved the problem we sct
out tc solve, we now understand how to nose new problems
which we have uncovered. First, in the parameter
identification area there appear to be several fruitful
research questions: How to identify parameters for
(1) general (or particular) nonlinear systems, (2)
multisinput, multioutput linear systems, (3) general
linear systems, and finally (4) "real world'" socio-
economic systems. The complexity of estimating time
delay suggests that the solution to these prcblems will
be more complex.

The second area is verification of the theory
by simulation. We have already conducted one costly
ccmputer experiment (Appendix D) which substantiates
our belief that insertion of estimated spectra for
true spectra enhances the estimation of time delay.
However, without running many such experiments, we have
no statistical argument to substantiate the theory.
Because the cost of running this analysis is prohibitive
on a large scale, digital computer, special purpuse

FFT hardware should be used to empirically validate the

theory. The cost of such & system will be significant.




e

. . T

146

The third area of investigation is an extension
of the theory to sequential estimation. 1In practice,
our observation interval will not be just T seconds;
rather there will be several consecutive periods of
T seconds. Knowing that the source is constrained in
its rate of speed, we should be able to rule out
certain ambiguous estimates of delay (bearing). More
generally, we could model the ships track and use
Kalman filter techniques to extrapolate best projected
position (bearing) based on the filter outputs.

Finally, the theory presumes a great deal about
(1) ocean acting as a linear time invariant filter over
the observation period T, (2) the characteristics of the
noise, and (3) the source motion. Thus, the true
engineering test is to make controlled measurements with
actual acoustic sources in the ocean in order to test
the hypothesis. Based on what we currently know, there

is every reason to believe such an endeavor will be

successful.
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APPENDIX A

TECHNIQUES FOR SPECTRAL ESTIMATION

The basic objective of this appendix is to
briefly describe two (similar) techniques used to
estimate the elements of the power spectral density
matrix. The estimates obtained are then used to form
an AML estimate of time delay. The two techniques are
the overlapped FFT technique (discussed by Carter,

Knapp, and Nuttall (1973a)) and the Chirp-Z transform
(CZT) technique (discussed by Carter and Knapp (1975)).
The methods discussed are sometimes referred to as

direct methods (as opposed to indirect correlation
methods) and have been discussed ia part by Knapp (1966),
Welch (1967), Bingham, Codfrey and Tukey (1967), Benignus
(1969a), Nuttsll (1971), Williams (1971), and Rabiner and
Rader (1972).

Both methods begin with two (one from each process)
digital waveforms (or with analog waveforms that have
been lowpass filtered and digitized). Briefly, there
are four steps in the estimation procedure: First, each
time series is segmented into N segments, each having
P-data points. Second, each segment is multiplied by
a smooth weighting function. Third, the Z transform of

the weighted P-point sequence is evaluated on the unit

147
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circle in the Z-plane. Firally, the Fourier coefflicients
thus obtained are used to estimate the elements of the
power spectral density matrix by averaging '"raw' power
spectral estimates over all the N segmeants. The two
metncds of spectral estimation differ in how the Z transform
is evaluated. One method uses the FFT; the other uses the
Partitioned and Mrdiiied CZT (PAM-CZT).

More explicitly, two random processes that are
jointly stationary over N data segments are processed
as follows {Carter and Krapp (12875)):

1. Each of the two time series is segmented
into N segments of P points. The segments may either
be disjoint or overlapped. Then one segment of P data
points with the same time origin is selected from each
of two time records. Even if each of the N data segments
is large (for example, greater than 4096), P should be
selected to ensure that the sampling frequency divided
by P will afford adequate spectral resolution.

2. Each of the two P point scgments is
multiplied by a smooth weighting function. Here smooth
means that the 1-th order derivative is continuous over
the fuil interval of data points, for =0, 1, 2, ... up
to some reasonable 1imit. The smoother the weighting
function, the more rapidly the side lobes of its Fourier
transform, or window function, will decay. The more
impulse-like the window, the less leakage there will be

of extraneous power, which corrupts spectral measurements.
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Hence, good weighting functions result in better spectral
estimates. The price paid for impulse-like window
functions with rapidly decaying side lobes is a wider
main lobe, that is, poorer frequency resolution when
P is held fixed. T1f better resolution is desired, more
data points per segment will be required. This in t:rn

requires both that the data be available and that they can
be eilicieiitliy proccessed. Morcover, fvom a ctahilitw
point of view, increasing P decreases the available
number of independent data segments when the data duration
is finite.

The specific selection of a weighting function
involves a number of tradeoffs. 4 commonly used weighting

(or windowing) function is the cosiune (Hanning) function

defined at the p-th instant in the interval (O,P) as

1 2mp }.
5 (1 - ¢cos ) ),

such a function starts out at zero for p=0 smoothly rises
to unity by p=P/2 and smoothly decays to zero at p=P.

The application of a cosine-weighting function,
which is necessary to reduce errors due to side lobe
leakage, has the disadvantage of apparently wasting the
-vailable (ata. This apparent wastage can be overcome
through overlapped processing. In particular, Nuttall
(1971) has shown that the same stability (as measured by

the number of equivalent degrees of freedom) can be

obtained from a fixed amount of data via overlapped
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processing as with Rliackman and Tukey (1958) correlation
processing for both auto and cross spectral density
estimation. (Results on cross spec*ra processing
followed in a supplemental report.)

Quite naturally, there is an increase in
computational cost assoziated with overlapped processing.
Specifically, the number of FFTs to be performed (a
measure ot the computational cost) increases with the
percent overlap specified. For example, the number of
FFTs required for 50-percent overlap is arproximately
twice the number for O-percent overlap. Increasing the
overlap from 50-percent to 62.5 percent requires
32-percent more FFTs. For Hanning weighting, the
improvement to be derived from using 62.5-percent overlap,
as opposed to 50-percent overlap, will not usually
warrant the increased computational costs (Carter, Knapp,
and Nuttall (1973a)).

Note that if there is nc overlap, each segment
would be virtually independent of the previous one
(except for correlated edge effects). Independent data
segments facilitate certain analytic computations. Hence,
all theoretical results here are concerned with the case
of independent segments; that is, no overlap. This is
true even though overlapped processing is recommended
for actual data processing. The amount of overlap

desirable can be predicted by picturing the apparent

wastage for a specific weighting.
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3. The transform of the weighted P-point
sequence is evaluated on the unit circle in the z piane.
The two sided Z-transform of an infinite sequence is

defined by Gold and Rader (1969) and Oppenheim and
Schafer (1975) as

oo

X (z) = ggimxn(p)z-p, n=1,2,...,N

) (A-1)

where z equals any ccomplex variable.

Similarly, Yn(z) is defined as the Z-transform
of yn(p). When xn(p), yn(p) are finite in duration, the
infinite series (A-1) becomes finite. Evaluation of the

Z-transform at P equally spaced points around the circle
yields the DFT:
P-1
Xy(K) = T x (e I2TRK/P et
p=0
Similarly, Yn(k) is the DFT of the n-th weighted data
segment yn(p), p=0,1,...,P-1. The DFT can rapidly be
evaluated by two methods: the Cooley-Tukey (1965, or the
PAM-CZT (see, for example, Rabiner, Schafer, and Rader
(1969), Schilling (1972), Ferrie, Nawrocki, and Carter
(1973), and Carter and Knapp (1975)). The FFT is a fast
algorithm for evaluating the DFT. If the DFT, (A-2),
is evaluated for P frequencies (k=0,1,...,P-1) it requires
P2 (complex) multiplicaticns and additions (MADs). The
FFT uses an ingenious computation method to evaluate
(A-2) in just Plogzp MADs. Thus, for P=4096, the number

of MiDs is reduced by a factor of more than 340. Thus,
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computations requiring more than 5 hours can be done
in less than 1 minute using FFTs in lieu of DFTs.
1 Specific details of the FFT are beyond the scope of

this dissertation.
¥ The DFT, (A-2), is a srecial case of the CZT, which
was introluced by Rabiner, Schafer, and Rader (1969)
and amplified, including software implementation, by
Schilling (1972)1 and hardware development by Alsup,
Means, and Whitehouse (1972), and Buss, Collins, Bailey
and Reeves (1973). Given sufficient data, it is a fast
and efficient technique for computing the Z-transform of
a sequence on any Z-plane spiral. The modified CZT

(MCZT) evaluates equispaced frequency points on the

unit circle in the Z-plane. With proper spacing and
E | starting points, it is equivalent to the DFT.
Computationally, the MCZT requires three FFTs each of

size greater than N (for example, 2N)to compute the

SR -

DFT, (A-2), However, the tradeoffs are really more

f complex than this. (For example, if wmany MCZTs are

1 to be performed one of the three required FFTs does not
need to be repeated after its first computation since
it is a transformed cosine data table.) The major
advantage of the MCZT occurs when the number of data

points P (in each of the N data segments) is large.

4 1This work was brought to the author's attention
1 by Dr. N. Ahmed, Kansas State University, Manhattan,
! Kansas.
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In such cases, the original P point data segment can be
again segmented into R partitions each disjoint with
size P/R data points. The R partitions are processed
with R MCZTs; the outputs are summed together with
appropriate phasing to achieve a PAM-CZT that is
equivalent to the DFT, (A-2,. The mathematical details
of this technique are covered in length by Ferrie,
Nawrocki, and Carter (1975); their inclusion here dnes
not appreciably add to the discussion but does considerably
complicate the notation due to conflicts with assigned
symbols. For most broad band cases of interest (and
certainly the example case in Appendix D), the rFT will be
preferable to the PAM-CZT. A complete discussion of the
tradeoffs is given by Carter and Knapp (1975).

Having computed the DFT, (A-2), either by aun
FFT or PAM-CIZIT, we are ready to proceed with the fourth
s5tep in the spectral estimation algorithm.

4. The spectral estimates are

N

A = 2 N

Gy (K) = e L IX (0|7, (A-3a)
n=1

Gyy) = e ¥ Y ] (A-3b)
n=1

A N x

ny(k) = cg 2: Xn(k)Yn(k)’ (A-3¢c)
n=1

where the constant
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1
c R L B , (A-3d)
g N-fS-P

and fs = sampling frequency. (The estimated cross spectrum

(A-3c) is complex.) The estimate of MSC

2 2
. |Gy (K |
= y
Cyy(K) =

= o (A-4)
Gxx(k)ny(k)
The AML estimation of time delay requires substituting

the estimates ny in place of the true (but unknown)

value of MSC. Therefore, we are concerned about the
statistical variability of the MSC. Further, the
statistical characteristics of C are of interest in their
own right, since C is useful not only in time estimation
(Chapter 3) but also for other applications (Chapter 2).

Appendix B discusses the statistics of the MSC estimate.
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APPENDIX B

STATISTICS OF THE MSC ESTIMATE

The MSC estimate, from (A-3) through (A-4), is

N * 2

X (K)Y (k)|

e oty ; (B-1)
Xy N
B

n=1

2N
S IS

Yn(k)42

n=1

where N is the number of data segments employed and
Xn(k), Yn(k) are the DFTs of the n-th weighted data
segments of x(t), y(t), respectively. Under certain
assumptions the statistical characteristics of C can

be evaluated. This appendix is divided into four
sections. The first section gives the pdf, cumulative
distribution function (¢df), and m-th moment of 6, given
C and N. The second section gives the bias of the
estimate é including a discussion of when the analytic
results fail and simulations to support the theory.

The third section gives the variance of C. The fourth
section gives a computer program for evaluating receiver
operating characteristics (ROC) of a linearly
thresholded coherence estimation processor. The

results in all four sections are based on the derivation
by Goodman (1957) of an analytical expression for the
pdf of the MC estimate and the subsequent extensions to

155
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MSC by Carter, Knapp, and Nuttall (1973a). These
results are based on two zero-mean stochastic processes

that were jointly stationary, Gaussian, and had been

segmented into N independent segments.1 Each segment

was assumed large enough to ensure adequate spectral

resolution. Further, each segment was assumed perfectly
weighted (windowed), in the sense that the Fourier
coefficient at some k-th frequency was to have '"leaked"
no power from other bings. The statistics do not hold
at the zero-th or folding frequencies (Hannan (1970)).
Extensions to Goodman's work are given by Alexander and
Vok (1963), Amos and Koopmans (1963), Enochson and
Goodman (1965), Nettheim (1966), Wahba (1966), Tick
(1967), Carter and Nuttall (1972), Carter, Knapp and
Nuttall (1973b), Halvorsen and Bendat (1975), and Nuttall
and Carter (1976a).

Bl. Probability Density, Cumulative Distribution
and m-th Moment of C

The first-order pdi, cdf and m-th moment of the
estimate of MSC, given the true value of MSC and the
number, N, of independent segments processed, are presented

in this section in closed form.

1Despite the fact that it is only mathematically
tractable to obtain analvtic expressions when the segments
are independent, we would in practice use s« 2 overlapped
processing to regain the apparent data wastage in_ urred
by the necessity of data weighting. Carter, Knapp, and
Nuttall (1973a) report the results of an empirical study
that demonstrates how bias and variance decrease as a
function of increased data segment overlap. Fifty percent
overlap is recommended with cosine weighting.
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The conditional pdf for C, between two processes,

given C and N, is (Carter, Knapp, and Nuttall (1973a))

p(CIN,C) = (8-1)(1-00N1-0)N2 (1-c)! 2N F, (1-N,1-N;1;¢0).

(B-2)
The 2F1 is a hypergeometric function with two numerator
terms and one denominator term. (It is a svecial case of
(B-7) and is discussed more fully in Sectio. B4.) For
present, we note equation (B-2) is desirable because

Fl(l—N,l—N;l;Cé) can be expressed as an (N-1)st order

polynomial (Abramowitz and Stegun (1964), Equation (15.5.1)).

A special case of the density function occurs when
C=0. In that event,
p(CIN C=0) = (N-1)(1- C) . (B-3)
Using a result of Fisher (1950), Carter, Knapp, and
Nuttall (1973a) have determined (in closed form) the
cumulative distribution of the estimate of MSC, namely,

N A K h
p(cIn,0)=c(:=S) N2(I=2Y. 2F1<-k,1-N;1;CC). (B-4)
1-c¢) | Eo\i-cc

A digital computer program to evaluate equation (B-4)
is given in Section B4. In the special case when

C=N, the cdf can be simplified to give

N-1 (B-5)

P(C|N,C=0) = 1-(1-8)

Equation (B-5), when differentiated, yields the pdf
equation (B-2).

The m-th moment of the MSC estimate can be found by

application of Equation 7.512(12) by Gradshteyn (1965) to

i i L N
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a different form of (B-1) to yield (Carter, Knapp, and

Nuttall (1973a))

N T'(N) I'(m+1l)

t\m -
ELETN,O1= (1-0)" i

3F2(m+1, N, N; m+N, 1:;C) . (B-6)

These results can be confirmed using Carter (1972a) and
Anderson (1958).

The 3F2 hypergeometiic functions (with three
numerator terms and two denomingtor terms) are given by
(a), (b), (c), 2F

kK k k

]
o (D (e) K

, (B-7a)

o
3F2(a,b,c; d,e; 2) =k§

where the (a)k notation is Pochhammer's symbol (Abramowitz

and Stegun (1964)) defined by

(a), 8 £§%§§1 , (B-7b)

where T( ) is the Gamma function. Similarly, the F two-

one function has two numerator and one denominator terms.

-

B2. Bias of C

This section deals with the bias of the MSC estimate.
Exact and approximate expressions are presented. In
addition, computer evaluation of the exact expressions
is presented to lend meaning to these results, and two
computer simulations are presented. The first simulation
demonstrates the need to have adequate spectral resolution,.
The second simulation verifies the theoretical results
for bias (and also variance, which is discussed in the

next section, B3).
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Consider now the first moment of the estimate of

MSC which can be written as

N
&N, el = &2 2N NN L0 (B-8)

which can be manipulated into the form (Carter (1972a))

E(C|N,C) = % + %}% C ,F (1,1;N+2:C) . (B-9)

The bias or expected estimation error is defined

as

Bias = B(C|N,C) = E(C|N,C) - C . (B-10)
An exact expression for the bias is

B(C|N,C) = & + R33 C ,F,(1,1;842;0)-C . (B-11)

The maximum bias is 1/N (regardless of N and C). The
bias is plotted in Figure B-1. It should be noted that

1im (Bias) = 0 ; (B-12)
N+

therefore, the estimator may be referred to as asymptotically
unbiased. By expanding 2F1 in (B-11) in a power series
in C and retaining terms to order N-z, the following

approximation is obtained (Nuttall and Carter (1976%)):

o1 2(,, 2¢
BI(C,N) = N(l -0 (1+ N ) . (B-13)

lots of N B(C,N) and N BI(C,N) are presented in Figure
B-2 for N=4 (they cross near C=0.4). Approximation

(B-13) is seen to be excellent over the entire range of
C. Furthermore, the discrepancy between the approximation

(B-13) and the true bias (B-11) is even less for larger
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5. 2€
NBJ{C,N) = (1-C)* (1+717)

NB(C,N)

NB(C,N)=(1 -C)2

B S

Figure B-2 Bias of 6 and Approximations for N=4
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values of N.
For large N, (B-13) is further reduced to the

approximation given by Carter, Knapp, and Nuttall (1973a):
1 2
BZ(C,N) = ﬁ(l—C) ; good for large N . (B-14)

Therefore, as N leads to infinity, N B(C,N) tends to
(1—C)2, which is also plotted in Figure B-2; furthermore,
the approach is monotonic.

In Benignus (1969a), (2), an approximate expression
for the bias, based upon a simulation approach, is

presented as
B.(C,N) = %(1-C) (B-15)
3'7 N ’

Whereas the results in Haubrich (1965) and (B-14) dictate
a quadratic behavior for bias, the apprroximation by
(B-15) indicates a linear behavior. 3ince (B-11) through
(B-14) is based upon theory and (B-15) is based upon
simulation, it was decided to verify (or invalidate)
(B-11) through (B-14) by a simulation approach. Two
computer simulations were conducted.

In order to verify the theory, the simulation must
preserve those assumptioas present in the derivation
of the theoretical expression (B-11) for bias. Specifically,
as pointed out by Carter and Knapp (1975), (B-11) holds
under the following assumptions:

1. jointly Gaussian stationary processes

2. N independent (non overlapped) data segments
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3. smooth weighting function to reduce side
lobe leakage
4. adequate frequency resoiution
When any of the specified assumptions are violated,

analytic results derived for bias (and variance) of
the estimator can be grossly misleading. (The Gaussian
part of the first assumption is weak; see the discussion
after (3-3).) As an empirical verification of this
statement, consider the study reported by Carter and
Knapp (1975), where ny(f) = 1,vf. Specifically, consider
a simple linear second-order digital filter of the form

- 0'98202Yn- + 0.00872Xn- (B-16)

Y = 1.97300Y 5

1
The system behavior was studied by probing the filter
with a white pseudorandom noise source. The sampling
rate was set equal to 2048 Hz;, hence, the Nyquist rate
of m radians is depicted as 1024 Hz in the figures that
follow.

The filter phase characteristics were estimated,
Figure B-3, with P=1024, cosine weighting, and 64
independent segments. Despite the fact that the MSC
between input and output should equal unity (hence, the
bias of the estimator would normally be zerc), the
estimate of MSC is grossly biased when a rectangular
weighting function is used. Specific MSC estimates are
depicted in Figure B-4 for the rectangular weighting

case. The bias attributable to improper windowing, while
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severe, can be substantially eliminated through
selection of a leakage-suppressing window. When a
cosine or Hanning window is utilized and the data are
reprocessed, estimates depicted in Figure B-5 are
obtained. Notice now that the bias, though greatly
improved, still exists in the vicinity of 30 Hz,.
Refzrring to Figure B-3, notice that 30 Kz is the center
of a frequency bard in which the first derivative of the
phase is large. The dependence of the bias of the MSC
estimate on this characteristic of phase is predicted in
Jenkins and Watts (1968), Hannan (1970), and Koopmans
(1974).

Once sufficient resolution has been achieved, this
bias no longer exists. To determine whether the bias
in Figure B-5 could be reduced by more averaging, as
analytizally predicted by the approximation in Jenkins
and Watts (1968), additional independent data segments
were processed in the simulation (that is, N was made
larger without changing P). In this case of insufficient
resolution, the maximum bias error was observed to be
independent cf the number of segments averaged; that is,
the estimator is biased as N+~ when the number of data
points per segment is small.

When large amourts of data are used, as in the case
of a computer simulation, better resolution can be
obtained without loss of averaging (variance reduction)
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